
COMP6771
Advanced C++ Programming

Week 5.1
Resource Management

1

In this lectureWhy?

performance & control---> power vs great responsibility
C++ responsibility and leak?
automatic garbage collection to free heap?
 While we have ignored heap resources (malloc/free) to date, they are a critical
part of many libraries and we need to understand best practices around usage.

What?

Resource can be very different

Memory allocation, files, mutex, MPI communicator
full control: create, manage and release: challenge for complex task
manually ??

new/delete
copy and move semantics
destructors
lvalues and rvalues 2

Revision: Objects

What is an object in C++?
An object is a region of memory associated with a type
Unlike some other languages (Java), basic types such as int and bool are objects

For the most part, C++ objects are designed to be intuitive to use
What special things can we do with objects

Create
Destroy
Copy
Move

3

Long lifetimes
There are 3 ways you can try and make an object in C++ have a lifetime
that outlives the scope it was defined it:

Returning it out of a function via copy (can have limitations)
Returning it out of a function via references (bad, see slide below)
Returning it out of a function as a heap resource (today's lecture)

//passing by reference with object
// created on heap
const Point& multiply(const Point& p){
Point *point=new Point();
//... Do multiplication
return *point;
}

1
2
3
4
5
6
7

//This function returns a new object,
// not a reference to the object
const Point multiply(const Point& p){
Point point();
//... Do multiplication
return point;
}

1
2
3
4
5
6
7

//passing by reference with object
// created on stack
const Point& multiply(const Point& p){
Point point();
//... Do multiplication
return point;
}

1
2
3
4
5
6
7

4

Long lifetime with references

We need to be very careful when returning references.
The object must always outlive the reference.
This is undefined behaviour - if you're unlucky, the code might even work!
Moral of the story: Do not return references to variables local to the
function returning.
For objects we create INSIDE a function, we're going to have to create heap
memory and return that.

auto okay(int& i) -> int& {
 return i;
}

auto okay(int& i) -> int const& {
 return i;
}

auto not_okay(int i) -> int& {
 return i;
}

auto not_okay() -> int& {
 auto i = 0;
 return i;
}

5

New and delete
Objects are either stored on the stack or the heap
In general, most times you've been creating objects of a type it has been on the stack
We can create heap objects via new and free them via delete just like in C (malloc/free)

New and delete call the constructors/destructors of what they are creating

#include <iostream>
#include <vector>

int main() {
 int* a = new int{4};
 std::vector<int>* b = new std::vector<int>{1,2,3};
 std::cout << *a << "\n";
 std::cout << (*b)[0] << "\n";
 delete a;
 delete b;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12

demo501-new.cpp 6

New and delete
Why do we need heap resources?

Heap object outlives the scope it was created in
More useful in contexts where we need more explicit control of ongoing memory size
(e.g. vector as a dynamically sized array)
Stack has limited space on it for storage, heap is much larger
No matter how much we try, it is very difficult to free all dynamically allocated
memory.

#include <iostream>
#include <vector>

int* newInt(int i) {
 int* a = new int{i};
 return a;
}

int main() {
 int* myInt = newInt();
 std::cout << *a << "\n"; // a was defined in a scope that
 // no longer exists
 delete a;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

demo502-scope.cpp

//No matter how much we try, it is very difficult
//to free all dynamically allocated memory.
void SomeMethod()
{
 ClassA *a = new ClassA;
 SomeOtherMethod(); // iwhat if t can throw an exception
 delete a;
}

1
2
3
4
5
6
7
8

7

std::vector<int> - under the hood

Let's speculate about how a vector is implemented. It's going to
have to manage some form of heap memory, so maybe it looks

like this? Is anything wrong with this?

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

 // Destructor
 ~my_vec() {};

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9
10
11

8

Destructors

Called when the object goes out of scope
What might this be handy for?
Does not occur for reference objects

Implicitly noexcept
What would the consequences be if this were not the case

Why might destructors be handy?
Freeing pointers
Closing files
Unlocking mutexes (from multithreading)
Aborting database transactions

9

std::vector<int> - Destructors

What happens when vec_short goes out of scope?
Destructors are called on each member.

Destructing a pointer type does nothing
As it stands, this will result in a memory leak. How do we fix?

my_vec::~my_vec() {
 delete[] data_;
}

1
2
3

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

 // Destructor
 ~my_vec() {};

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9
10
11

10

Rule of 5
When writing a class, if we can't default all of our operators
(preferred), we should consider the "rule of 5"

1. Destructor
2. Copy constructor
3. Copy assignment
4. Move assignment
5. Move constructor

The presence or absence of these 5 operations are critical
in managing resources
Ownership (single vs shared) and delegation power
We only think how long we need recourse and manipulate
object accordingly

11

std::vector<int> - under the hood

Though you should always consider it,
you should rarely have to write it

If all data members have one of these
defined, then the class should
automatically define this for you
But this may not always be what you
want
C++ follows the principle of "only pay
for what you use"

Zeroing out the data for an int is
extra work
Hence, moving an int actually just
copies it
Same for other basic types

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// Call constructor.
auto vec_short = my_vec(2);
auto vec_long = my_vec(9);
// Doesn't do anything
auto& vec_ref = vec_long;
// Calls copy constructor.
auto vec_short2 = vec_short;
// Calls copy assignment.
vec_short2 = vec_long;
// Calls move constructor.
auto vec_long2 = std::move(vec_long);
// Calls move assignment
vec_long2 = std::move(vec_short);

1
2
3
4
5
6
7
8
9
10
11
12
13

12

std::vector<int> - Copy constructor
What does it mean to copy a my_vec?
What does the default synthesized copy
constructor do?

It does a memberwise copy
What are the consequences?

Any modification to vec_short will also
change vec_short2
We will perform a double free

How can we fix this?

class my_vec {
 // Constructor
 my_vec(int size):
 data_{new int[size]},
 size_{size},
 capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

auto vec_short = my_vec(2);
auto vec_short2 = vec_short;

1
2

my_vec::my_vec(my_vec const& orig): data_{new int[orig.size_]},
 size_{orig.size_},
 capacity_{orig.size_} {
 std::copy(orig.data_, orig.data_ + orig.size_, data_);
}

1
2
3
4
5

13

std::vector<int> - Copy assignment
Assignment is the same as construction,
except that there is already a constructed
object in your destination
You need to clean up the destination first
The copy-and-swap idiom makes this trivial

class my_vec {
 // Constructor
 my_vec(int size):
 data_{new int[size]},
 size_{size},
 capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24auto vec_short = my_vec(2);

auto vec_long = my_vec(9);
vec_long = vec_short;

1
2
3

my_vec& my_vec::operator=(my_vec const& orig) {
 my_vec(orig).swap(*this); return *this;
}

void my_vec::swap(my_vec& other) {
 std::swap(data_, other.data_);
 std::swap(size_, other.size_);
 std::swap(capacity_, other.capacity_);
}

// Alternate implementation, may not be as performant.
my_vec& my_vec::operator=(my_vec const& orig) {
 my_vec copy = orig;
 std::swap(copy, *this);
 return *this;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

14

lvalue vs rvalue
not really language features, properties of semantic
STL advocated value semantic -> leads to freq. copying:
Solution: rvalue copying-to take resources
lvalue: An expression that is an object reference

E.G. Variable name, subscript reference
Always has a defined address in memory

rvalue: Expression that is not an lvalue

E.G. Object literals, return results of functions
Generally has no storage associated with it
rvalues are temporary and short lived, while lvalues live a longer life since they exist as variables

int main() {
 int i = 5; // 5 is rvalue, i is lvalue
 int j = i; // j is lvalue, i is lvalue
 int k = 4 + i; // 4 + i produces rvalue then stored in lvalue k
 int k = i + j; //ok
 6=k; //error : error: lvalue required as left operand of assignment
 int* y = &k; // lvalue=takes an lvalue argument and produces an rvalue
 int* y = &666; // error: lvalue required as unary '&' operand
 setValue() = 3; //rvalue= // lvalue required as left operand of
 \\assignment: setValue() returns an rvalue
 SeetValue() = 3; //Ok setGlobal returns a referenc lvalue
}

1
2
3
4
5
6
7
8
9
10
11
12

int SeetValue()
{
 return 6;
}
int& setValue()
{
 return valuee;
}

1
2
3
4
5
6
7
8

std::vector<std::vector<int> vec1;
std::vector<int> vec2={1,2,3,4,5};
//rvalue reference avoid copying
vec1.emplace_back(std::move(vec2));

C++11 std::cref // accept only lvalue reference

C++20 Rnages

auto rng=std::vector<int>{1,2,3} | std::view ..
.. ::filter([](int i){retrun 0==i%2;});

1
2
3
4
5
6
7
8
9

10
11

15

lvalue references
There are multiple types of references

Lvalue references look like T&
Lvalue references to const look like T const&

Once the lvalue reference goes out of scope, it
may still be needed

int y = 10;
int& yref = y;
yref++; //OK Ref must point to an existing object

int& yref = 10; // ??

void f(my_vec& x);

void f(int& x)
{
}

int main()
{
 f(10); // Nope!
 int x = 10;
 f(x);
 const int& ref = 10; // you are allowed to bind a const lvalue to an rvalue
 ++ref; // error: increment of read-only reference ‘ref
 int* p2 = &f(); // error, cannot take the address of an rvalue
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

const int& ref = 10;
// ... would translate to:
int __internal_unique_name = 10;
const int& ref = __internal_unique_n

1
2
3
4

Text

16

rvalue references
Rvalue references look like T&&
rvalue references extend the lifespan of the to which they are assigned.
Non-const rvalue references allow you to modify the rvalue.
An rvalue reference formal parameter means that the value was disposable from the caller of the function

If outer modified value, who would notice / care?
The caller (main) has promised that it won't be used anymore

If inner modified value, who would notice / care?
The caller (outer) has never made such a promise.
An rvalue reference parameter is an lvalue inside the function

temporary object

// Declaring rvalue reference
int&& rref = 20;

void inner(std::string&& value) {
 value[0] = 'H';
 std::cout << value << '\n';
}

void outer(std::string&& value) {
 inner(value); // This fails? Why?
 std::cout << value << '\n';
}

int main() {
 outer("hello"); // This works fine.
 auto s = std::string("hello");
 inner(s); // This fails because s is an lvalue.
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 // as l-value cannot be assigned to the r-value references
 int &&ref = a;

1
2

17

https://docs.microsoft.com/en-us/cpp/cpp/temporary-objects?view=vs-2019

std::move

// Looks something like this.
T&& move(T& value) {
 return static_cast<T&&>(value);
}

1
2
3
4

Uses of rvalue references:
They are used in working with the move constructor and move assignment.
cannot bind non-const lvalue reference of type ‘int&‘ to an rvalue of type ‘int’.
cannot bind rvalue references of type ‘int&&‘ to lvalue of type ‘int’.

A library function that converts an lvalue to an rvalue so that a "move constructor" (similar to
copy constructor) can use it.

This says "I don't care about this anymore"
All this does is allow the compiler to use rvalue reference overloads

void inner(std::string&& value) {
 value[0] = 'H';
 std::cout << value << '\n';
}

void outer(std::string&& value) {
 inner(std::move(value));
 // Value is now in a valid but unspecified state.
 // Although this isn't a compiler error, this is bad code.
 // Don't access variables that were moved from, except to reconstruct them.
 std::cout << value << '\n';
}

int main() {
 f1("hello"); // This works fine.
 auto s = std::string("hello");
 f2(s); // This fails because i is an lvalue.
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

void fun(X& x); // lvalue reference overload
void fun(X&& x); // rvalue reference overload

fun(a);
fun(100);

1
2
3
4
5

18

void fun(int& value){
std::cout<<"lvalue";
}
void fun(const int& value){
std::cout<<"Constant lvalue";
}
void fun(int&& value){
std::cout<<"rvalue";
}

int main(){
int value=5;
fun(value);
fun(5);
fun(std::move(value));
fun(static_cast<int &&>(value));
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

19

Moving objects
Always declare your moves as noexcept

Failing to do so can make your code slower
Consider: push_back in a vector

Unless otherwise specified, objects that have been moved from are in a valid but unspecified state
Moving is an optimisation on copying

The only difference is that when moving, the moved-from object is mutable
Not all types can take advantage of this

If moving an int, mutating the moved-from int is extra work
If moving a vector, mutating the moved-from vector potentially saves a lot of work

Moved from objects must be placed in a valid state
Moved-from containers usually contain the default-constructed value
Moved-from types that are cheap to copy are usually unmodified
Although this is the only requirement, individual types may add their own constraints

Compiler-generated move constructor / assignment performs memberwise moves

20

std::vector<int> - Move constructor
class my_vec {
 // Constructor
 my_vec(int size)
 : data_{new int[size]}
 , size_{size}
 , capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

auto vec_short = my_vec(2);
auto vec_short2 = std::move(vec_short);

1
2

my_vec::my_vec(my_vec&& orig) noexcept
: data_{std::exchange(orig.data_, nullptr)}
, size_{std::exchange(orig.size_, 0)}
, capacity_{std::exchange(orig.capacity_, 0)} {}

1
2
3
4

Very similar to copy constructor, except we can
use std::exchange instead.

21

std::vector<int> - Move assignment

Like the move constructor, but the
destination is already constructed

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, ca

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

auto vec_short = my_vec(2);
auto vec_long = my_vec(9);
vec_long = std::move(vec_short);

1
2
3

my_vec& my_vec::operator=(my_vec&& orig) noexcept {
 // The easiest way to write a move assignment is generally to do
 // memberwise swaps, then clean up the orig object.
 // Doing so may mean some redundant code, but it means you don't
 // need to deal with mixed state between objects.
 std::swap(data_, orig.data_);
 std::swap(size_, orig.size_);
 std::swap(capacity_, orig.capacity_);

 // The following line may or may not be nessecary, depending on
 // if you decide to add additional constraints to your moved-from
object.
 delete[] orig.data_
 orig.data_ = nullptr;
 orig.size_ = 0;
 orig.capacity = 0;

 return *this;
}

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18

22

Explicitly deleted copies and moves

We may not want a type to be copyable / moveable
If so, we can declare fn() = delete

class T {
 T(const T&) = delete;
 T(T&&) = delete;
 T& operator=(const T&) = delete;
 T& operator=(T&&) = delete;
};

1
2
3
4
5
6

23

Implicitly deleted copies and moves

Under certain conditions, the compiler will not generate copies and moves
The implicitly defined copy constructor calls the copy constructor member-wise

If one of its members doesn't have a copy constructor, the compiler can't generate one for
you
Same applies for copy assignment, move constructor, and move assignment

Under certain conditions, the compiler will not automatically generate copy / move
assignment / constructors

eg. If you have manually defined a destructor, the copy constructor isn't generated
If you define one of the rule of five, you should explictly delete, default, or define all five

If the default behaviour isn't sufficient for one of them, it likely isn't sufficient for others
Explicitly doing this tells the reader of your code that you have carefully considered this
This also means you don't need to remember all of the rules about "if I write X, then is Y
generated"

24

RAII (Resource Acquisition Is Initialization)

In summary, today is really about emphasising RAII

Resource = heap object
A concept where we encapsulate resources inside objects

Acquire the resource in the constructor
Release the resource in the destructor
eg. Memory, locks, files
resource is always released at a known point in the program, which you can control.

Every resource should be owned by either:
Another resource (eg. smart pointer, data member)
Named resource on the stack
A nameless temporary variable

25

Object lifetimes

To create safe object lifetimes in C++, we always attach the lifetime of one object to that
of something else

Named objects:
A variable in a function is tied to its scope
A data member is tied to the lifetime of the class instance
An element in a std::vector is tied to the lifetime of the vector

Unnamed objects:
A heap object should be tied to the lifetime of whatever object created it
Examples of bad programming practice

An owning raw pointer is tied to nothing
A C-style array is tied to nothing

Strongly recommend watching the first 44 minutes of Herb Sutter's cppcon talk
"Leak freedom in C++... By Default"

26

https://www.youtube.com/watch?v=JfmTagWcqoE

class widget {
private:
 gadget g; // lifetime automatically tied to enclosing object
public:
 void draw();
};

void functionUsingWidget () {
 widget w; // lifetime automatically tied to enclosing scope
 // constructs w, including the w.g gadget member
 // ...
 w.draw();
 // ...
} // automatic destruction and deallocation for w and w.g
 // automatic exception safety,
 // as if "finally { w.dispose(); w.g.dispose(); }"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

class widget
{
private:
 int* data;
public:
 widget(const int size) { data = new int[size]; } // acquire
 ~widget() { delete[] data; } // release
 void do_something() {}
};

void functionUsingWidget() {
 widget w(1000000); // lifetime automatically tied to enclosing scope
 // constructs w, including the w.data member
 w.do_something();

} // automatic destruction and deallocation for w and w.data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <memory>
class widget
{
private:
 std::unique_ptr<int[]> data;
public:
 widget(const int size) { data = std::make_unique<int[]>(size); }
 void do_something() {}
};

void functionUsingWidget() {
 widget w(1000000); // lifetime automatically tied to enclosing scope
 // constructs w, including the w.data gadget member
 // ...
 w.do_something();
 // ...
} // automatic destruction and deallocation for w and w.data

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

void SomeMethod()
{
 ClassA *a = new ClassA;
 SomeOtherMethod(); // it can throw an exception
 delete a;
}

1
2
3
4
5
6

void SomeMethod()
{
 std::auto_ptr<ClassA> a(new ClassA); // deprecated, pl
 SomeOtherMethod(); // it can throw an exception
}
//Using smart pointers for memory allocation, we may be
 // potential for memory leaks.

1
2
3
4
5
6
7

27

Feedback

28

