COMP6771
Advanced C++ Programming

Week 5.1
Resource Management

Why? In this lecture

® performance & control---> power vs great responsibility

® (++ responsibility and leak?

® automatic garbage collection to free heap?

® While we have ignored heap resources (malloc/free) to date, they are a critical
part of many libraries and we need to understand best practices around usage.

What?

® Resource can be very different

= Memory allocation, files, mutex, MPI communicator
m full control: create, manage and release: challenge for complex task

= manually 7?

® new/delete

® copy and move semantics
® destructors

® |values and rvalues

Revision: Objects

e What is an object in C++7
= An object is a region of memory associated with a type

= Unlike some other languages (Java), basic types such as int and bool are objects
e For the most part, C++ objects are designed to be intuitive to use
e What special things can we do with objects

= Create

= Destroy

= Copy

Y [e}V/S

<N o0 WD

Long lifetimes

e There are 3 ways you can try and make an object in C++ have a lifetime
that outlives the scope it was defined it:

m Returning it out of a function via copy (can have limitations)
m Returning it out of a function via references (bad, see slide below)
= Returning it out of a function as a heap resource (today's lecture)

const Point multiply(const Pointé& p){
Point point();

return point;

}

const Point& multiply(const Pointé& p){
Point point();

<N OO WD

return point;

: const Pointé& multiply(const Points p){

Point *point=new Point();

N OO0 W N R

return *point;

}

Long lifetime with references

e We need to be very careful when returning references.

e The object must always outlive the reference.

e This is undefined behaviour - if you're unlucky, the code might even work!

e Moral of the story: Do not return references to variables local to the
function returning.

e For objects we create INSIDE a function, we're going to have to create heap
memory and return that.

auto okay(int& i) -> int& { auto not_okay(int i) -> inté& {
return i; return 1i;
} }
auto not okay() -> int& {

auto okay(int& 1) -> int consté& {
return 1i;

} }

auto i = 0;
return i;

New and delete

* Objects are either stored on the
e |In general, most times you've been creating objects of a type it has been on the stack
e \We can create heap objects via new and free them via delete just like in C (malloc/free)

= New and delete call the constructors/destructors of what they are creating

1 #include <iostream>
2 #include <vector>
3

4 1int main() {

5 int* a = new int{4};

6 std: :vector<int>* b = new std::vector<int>{1,2,3};
7 std::cout << *a << "\n";

8 std::cout << (*b)[0] << "\n";

9 delete a;
10 delete b;

11 return 0;
12 }

demo501-new.cpp

New and delete

 Why do we need heap resources?
= Heap object outlives the scope it was created in

= More useful in contexts where we need more explicit control of ongoing memory size
(e.g. vector as a dynamically sized array)

m Stack has limited space on it for storage, heap is much larger

= No matter how much we try, it is very difficult to free all dynamically allocated
memory.

#include <iostream>

#include <vector> .
volid SomeMethod()

{

ClassA *a = new ClassA;
SomeOtherMethod() ;
delete a;

}

int* newInt(int 1) {
int* a = new int{i};
return a;

}

O JdJ OOl b WDN K
OO Ul WN K

O

int main() {

int* myInt = newInt();
11 std: :cout << *a << "\n";
12
13 delete a;
14 return 0O;
15 }

=
o

demo502-scope.cpp

std::vector<int> - under the hood

Let's speculate about how a vector is implemented. It's going to
have to manage some form of heap memory, so maybe it looks
like this? Is anything wrong with this?

class my vec {

my vec(int size): data {new int[size]}, size {size}, capacity {size} {}

~my_vec() {};

int* data ;
int size ;
int capacity ;

=
© W 00 JO0 Ul s WD P

11 }

Destructors

e Called when the object goes out of scope

= \WWhat might this be handy for?
= Does not occur for reference objects

o Implicitly noexcept
= \WWhat would the consequences be if this were not the case
* Why might destructors be handy?

= Freeing pointers

= Closing files

= Unlocking mutexes (from multithreading)
= Aborting database transactions

'_\
O VW 0O JOo6 O WD -

11 }

class my vec {

std::vector<int> - Destructors

e WWhat happens when vec_short goes out of scope?
m Destructors are called on each member.
o Destructing a pointer type does nothing
e As it stands, this will result in a memory leak. How do we fix?

1 my vec::~my vec()
my vec(int size): data {new int[size]}, size {size}, capacity {size} {} 2 delete[] data_;
3

}

~my_vec() {};

int* data ;
int size ;
int capacity ;

{

10

Rule of 5

When writing a class, if we can't default all of our operators
(preferred), we should consider the "rule of 5"

1. Destructor

2. Copy constructor
3. Copy assignment
4. Move assignment
5. Move constructor

* The presence or absence of these 5 operations are critical

IN Managing resources

e Ownership (single vs shared) and delegation power

e We only think how long we need recourse and manipulate
object accordingly

std::vector<int> - under the hood

| class my_vec |
* Though you should always consider it, , Tovec(int size): dacafnew intlsizel}, size {size}, capacity {size})
you should rarely have to write it ¢ my_vec(ny_vee const) - defauit
= |f all data members have one of these ;™" erererormimeres conemy = demts
defined, then the class should 1 my_veo(ny_vecks) noescept. - defautt;
automatically define this for you 13 my_vecs operator=(my vecss) noexcept = default;
= But this may not always be what you 't my vec() = default;
want ?—L; int* data_;

19 int size ;

= C++ follows the principle of "only pay 20 ine capacier ;
for what you use"

o Zeroing out the data for an intis) muto vec short - my vec();

3 auto vec long = my vec(9);
extra work ;

5 auto& vec _ref = vec long;

© Hence, 6
7 auto vec _short2 = vec_short;
S vec_short2 = vec long;

© Same for Other baSIC types 12 auto vec long2 = std::move(vec long);
1? vec_long2 = std::move(vec_ short);

12

O s Wb

std::vector<int> - Copy constructor

class my vec {

e \What does it mean to copy a my_vec? !
e \WWhat does the default synthesized copy 3 my_vec(int size):

4 data {new int[size]},
constructor do? : size {size},
6
7
8

capacity {size} {}

= |t does a memberwise copy

e \What are the ConsequenceS? 9 my vec(my vec const&) = default;
10
= Any modification to vec_short will also 11 my_vecs operator=(my_vec consts) = default;
_' 12
change vec_short2 13
0 14 && t = default;
= We will perform a double free o TYevecliv_vecks) noexcept = detan
. . 16 my vec& operator=(my vec&&) noexcept = default;
e How can we fix this? 17
18
19 ~my vec() = default;
20
21 int* data_ ;
22 int size ;
23 int capacity ;
24 }
my vec::my vec(my vec const& orig): data {new int[orig.size]}, 1 auto vec short = my vec(2);
size_{orig.size_}, 2 auto vec _short2 = vec_ short;

capacity {orig.size } {
std::copy(orig.data , orig.data + orig.size , data);

}

std::vector<int> - Copy assignment

e Assignment is the same as construction,

except that there is already a constructed , EHees e
object in your destination 3 my vec(int size):
: . . 4 data {new int[size
e You need to clean up the destination first rea_ine [mte=)i
5 size {size},
e The copy-and-swap idiom makes this trivial : capacity_{size} {}
7
1 my vec& my vec::operator=(my vec const& orig) { ¢
2 Ey_vec(d;ig)dnﬁqu*this); return *this; 13 ily_FEG(aly_TeE @EnEet) = elesandics
3 }
4 11 my vec& operator=(my vec const&) = default;
5 void my vec::swap(my vec& other) { 12
6 std: :swap(data , other.data); 13
7 std::swap(size_, other.size); 14 my vec(my vec&&) noexcept = default;
8 std: :swap(capacity , other.capacity); 15
9} 16 my vec& operator=(my vec&&) noexcept = default;
10 17
11 18
12 my vec& my vec::operator=(my vec const& orig) {
13 my vec copy = orig; 19 ~my vec() = default;
14 std: :swap(copy, *this); 20
15 return *this; 21 int* data ;
16 } 22 int size ;
23 int capacity ;
1 auto vec _short = my vec(2); 24 '}

2 auto vec_long = my vec(9);
3 vec_long = vec_short;

lvalue vs rvalue

* not really language features, properties of semantic

-> |eads to freq. copying:

® Solution: rvalue copying-to take resources
* lvalue: An expression that is an object reference

® E.G. Variable name, subscript reference
® Always has a defined address in memory

* rvalue: Expression that is not an Ivalue

m E.G. Object literals, return results of functions
® Generally has no storage associated with it
® rvalues are temporary and short lived, while Ivalues live a longer life since they exist as variables

°
4

\\assignment: setValue() returns an rvalue

N

1 int main() {

2 int 1 = 5;

3 int J = 1;

4 int k = + 1i;
5 int k = 1 + J;
6 =k;

7 int* y = &k;

8 int* y = & ;
9 setValue() =
10
11 SeetValue() =

12 1V

°
4

=

R O W o0 Jo U s WD K

std: :vector<std::vector<int> vecl;
std::vector<int> vec2={1,2,3,4,5};
//rvalue reference avoid copying

vecl.emplace back(std::move(vec2));

C++11 std::cref // accept only lvalue reference
C++20 Rnages

auto rng=std::vector<int>{1,2,3} | std::view ..
. t:filter([](int 1i){retrun 0==1%2;});

int SeetValue()
{

return

}
int& setValue()

{

return valuee;

0O o Ul WDN K

}

15

lvalue references

e There are multiple types of references

m | value references look like T&
m | value references to const look like T const&

 Once the Ivalue reference goes out of scope, it
may still be needed

int y = ;
int& yref = y; Text
yref++;

int& yref =

00 o Ul WD -

void f(my vec& Xx);

O

void f(int& x)
{
}

= = =
(G I \ O i)

int maing()
{
£(10);
int x =
f(x); 1
const int& ref = 2
++ref; 3 int internal unique name =
int* p2 = &f(); 4 const int& ref = internal unique !

= == =
~ O O b

const int& ref =

N = =
O O 0

21 '}

rvalue references

e Rvalue references look like T&&

e rvalue references extend the lifespan of the temporary object to which they are assigned.

e Non-const rvalue references allow you to modify the rvalue.

e An rvalue reference formal parameter means that the value was disposable from the caller of the function

m |f outer modified value, who would notice / care?
o The caller (main) has promised that it won't be used anymore
® |[f inner modified value, who would notice / care?

o The caller (outer) has never made such a promise.
o An rvalue reference parameter is an Ivalue inside the function

1
int&& rref = : 2 int &&ref = a;

volid inner(std::string&& value) {
value[0] = 'H';
std::cout << value << '\n';

}

00 ~J o O LW DN K

O

void outer(std::string&& value) {
inner (value);
std: :cout << value << '\n';

}

e e
S W N - o

int main() {

15 outer("hello");

16 auto s = std::string("hello");
17 inner(s);

18 }

https://docs.microsoft.com/en-us/cpp/cpp/temporary-objects?view=vs-2019

std::move

= They are used in working with the move constructor and move assignment.
® cannot bind non-const Ivalue reference of type ‘int&' to an rvalue of type ‘int’.
® cannot bind rvalue references of type ‘int&&’ to Ivalue of type ‘int’.

e Alibrary function that converts an lvalue to an rvalue so that a "move constructor" (similar to
copy constructor) can use it.

= This says "l don't care about this anymore"
= All this does is allow the compiler to use rvalue reference overloads

! 1 void inner(std::stringé&& value) {
2 T&& move(T& value) { 5 valuef0] = 'H’:
3 return static cast<T&&>(value); 3 std::cout << value << '\n';
4 1} 4 }
5
6 void outer(std::string&& value) ({
7 inner(std: :move(value));
8
: 9
1 void fun(X& X); 10
2 velel EmSEE a9 11 std: :cout << value << '\n';
3
4 £ 12 }
. fun(a)l 13
un (LO0) 7 14 int main() {

15 fl1("hello");

16 auto s = std::string("hello");
17 £2(s);

18 }

00O o Ul WDN K

el el e
<N oD W R O W

void fun(int& value){
std::cout<<"lvalue";

void fun(const inté& value){
std: :cout<<"Constant lvalue';

void fun(int&& value)({
std::cout<<"rvalue";

}

int main(){

int value=5;

fun(value);

fun(5);

fun(std: :move(value));
fun(static cast<int &&>(value));

}

19

Moving objects

Always declare your moves as noexcept

= Failing to do so can make your code slower
= Consider: push_back in a vector

Unless otherwise specified, objects that have been moved from are in a valid but unspecified state
Moving is an optimisation on copying

= The only difference is that when moving, the moved-from object is mutable
= Not all types can take advantage of this

o If moving an int, mutating the moved-from int is extra work
o If moving a vector, mutating the moved-from vector potentially saves a lot of work

Moved from objects must be placed in a valid state

= Moved-from containers usually contain the default-constructed value
= Moved-from types that are cheap to copy are usually unmodified
= Although this is the only requirement, individual types may add their own constraints

Compiler-generated move constructor / assignment performs memberwise moves

20

= W N -

std::vector<int> - Move constructor

1 class my vec {

2

3 my vec(int size)

4 : data {new int[size]}

5 , Size {size}

6 , capacity {size} {}

7

8

Very similar to copy constructor, except we can 13 my_vec(my_vec const&) = default;
use StdIIEXChange inStead- 11 my vec& operator=(my vec const&) = default;

12

my vec::my vec(my vec&& orig) noexcept 13
data {std::exchange(orig.data ,) } 1;1 my_vec(my_vec&&) noexcept = default;

! Slze—{Std: :exchange(or:.g.s:l.ze_,)} 16 my vec& operator=(my vec&&) noexcept = default;
, capaclity {std::exchange(orig.capacity , 0)} {} 17

18

19 ~my vec() = default;

20

21 int* data ;

22 int size ;

23 int capacity ;

24 }

1 auto vec short = my vec(2);
2 auto vec_short2 = std::move(vec_short);

std::vector<int> - Move assignment

1 class my vec {
2
. 3 my vec(int size): data {new int[size]}, size {size}, ca
Like the move constructor, but the . - - S '
0 . ° 5
destination is already constructed T
7
8 my vec& operator=(my vec const&) = default;
9
1 my vec& my vec::operator=(my vec&& orig) noexcept { 10
2 11 my vec(my vec&&) noexcept = default;
3 12
4 13 my vec& operator=(my vec&&) noexcept = default;
5 14
6 std::swap(data , orig.data); 15
7 std::swap(size , orig.size); 16 ~my_vec() = default;
8 std::swap(capacity , orig.capacity); 1L
9 18 int* data_;
10 19 int size_ ;
11 20 int capacity ;
21 }

12 delete[] orig.data

13 orig.data = :

14 orig size = 0 1 auto vec short = my vec(2);

. orig.ca aoit Lo 2 auto vec_long = my vec(9);

T g.cap Y ! 3 vec long = std::move(vec_short);
17 return *this;

18 }

Explicitly deleted copies and moves

e \We may not want a type to be copyable / moveable
e |f so, we can declare fn() = delete

1 class T {

2 T(const T&) = delete;

3 T(T&&) = delete;

4 T& operator=(const T&) = delete;
5 T& operator=(T&&) = delete;

6 };

Implicitly deleted copies and moves

Under certain conditions, the compiler will not generate copies and moves
The implicitly defined copy constructor calls the copy constructor member-wise

= |f one of its members doesn't have a copy constructor, the compiler can't generate one for
you
= Same applies for copy assignment, move constructor, and move assignment

Under certain conditions, the compiler will not automatically generate copy / move
assignment / constructors

= eg. |f you have manually defined a destructor, the copy constructor isn't generated
If you define one of the rule of five, you should explictly delete, default, or define all five

= |f the default behaviour isn't sufficient for one of them, it likely isn't sufficient for others

= Explicitly doing this tells the reader of your code that you have carefully considered this

= This also means you don't need to remember all of the rules about "if | write X, then is'Y
generated"

24

RAIl (Resource Acquisition Is Initialization)

In summary, today is really about emphasising RAI

® Resource = heap object
e A concept where we encapsulate resources inside objects

= Acquire the resource in the constructor
= Release the resource in the destructor
= eg. Memory, locks, files

m resource is always released at a known point in the program, which you can con
e Every resource should be owned by either:

= Another resource (eg. smart pointer, data member)

= Named resource on the stack

= A nameless temporary variable

25

Object lifetimes

To create safe object lifetimes in C++, we always attach the lifetime of one object to that
of something else

e Named objects:

= Avariable in a function is tied to its scope
m A data member is tied to the lifetime of the class instance
m An element in a std::vector is tied to the lifetime of the vector

e Unnamed objects:

= A heap object should be tied to the lifetime of whatever object created it
® Examples of bad programming practice

o An is tied to nothing
o A is tied to nothing

e Strongly recommend watching the first 44 minutes of Herb Sutter's cppcon talk
"Leak freedom in C++... By Default"

26

https://www.youtube.com/watch?v=JfmTagWcqoE

0O o Ul WIDN -

el e el el e
oUW WN P O W

0O o Ul WDN -

el el el el L
Ol WN P OV

class widget {
private:

gadget g;
public:

void draw();

}i

void functionUsingWidget () {

widget w;
w.draw();

}

class widget

{

private:
int* data;

public:
widget(const int size) { data = new int[size]; }
~widget() { delete[] data; }
void do something() {}

}i

void functionUsingWidget() {
widget w(1000000);

w.do_something();

0O J o Ul WDN -

e N S U S S
N oUW R OV

#include <memory>

class widget

{

private:
std::unique ptr<int[]> data;

public:
widget(const int size) { data = std::make unique<int[]>(size);
void do_something() {}

void functionUsingWidget() {
widget w(1000000);

w.do something();

void SomeMethod()
{

ClassA *a = new ClassA;
SomeOtherMethod () ;
delete a;

}

o Ul W DN P

void SomeMethod()
{

std::auto ptr<ClassA> a(new Classh);
SomeOtherMethod();

}

~N oy O W IN K

}

27

