
COMP6771
Advanced C++ Programming

Week 4.2
Exceptions

What good can using exceptions do for me?

1

In this lecture

Syn vs Asyn
Why?

Sometimes our programs need to deal with unexpected
runtime errors and handle them gracefully.

What?

Exception object
Throwing and catching exceptions
Rethrowing
noexcept

2

#include <iostream>
#include <vector>

auto main() -> int {
 std::cout << "Enter -1 to quit\n";
 std::vector<int> items{97, 84, 72, 65};
 std::cout << "Enter an index: ";
 for (int print_index; std::cin >> print_index;) {
 if (print_index == -1) break;
 std::cout << items.at(print_index) << '\n';
 std::cout << "Enter an index: ";
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Let's start with an example
What does this produce?

*malloc(~~~): cant allocate ? or int printf()

long strtoul() --> erno ERANGE

main() ---> A()--->B()--->C(){return 0 or -1} Can B() or A() handle ?

demo455-exception1.cpp
3

Let's start with an example

What does this produce?
#include <iostream>
#include <vector>

auto main() -> int {
 std::cout << "Enter -1 to quit\n";
 std::vector<int> items{97, 84, 72, 65};
 std::cout << "Enter an index: ";
 for (int print_index; std::cin >> print_index;) {
 if (print_index == -1) break;
 try {
 std::cout << items.at(print_index) << '\n';
 items.resize(items.size() + 10);
 } catch (const std::out_of_range& e) {
 std::cout << "Index out of bounds\n";
 } catch (...) {
 std::cout << "Something else happened";
 }
 std::cout << "Enter an index: ";
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

demo455-exception2.cpp 4

Exceptions: What & Why?
What:

Exceptions: Are for exceptional circumstances
Happen during run-time anomalies (things not going to plan A!)

Exception handling:
Run-time mechanism
C++ detects a run-time error and raises an appropriate exception
Another unrelated part of code catches the exception, handles it,
and potentially rethrows it

Why:
Allows us to gracefully and programmatically deal with anomalies, as
opposed to our program crashing.

5

What are "Exception Objects"?
throw-expression-Obj; try, catch-handler
standard ++ & library report error by throwing exception
Any type we derive from std::exception

throw std::out_of_range("Exception!");
throw std::bad_alloc("Exception!");

Why std::exception? Why classes?
#include <exception> for std::exception object
#include <stdexcept> for objects that inherit std::exception
typeinfo> and <new> are other exception: all in namespace std

https://en.cppreference.com/w/cpp/error/exception 6

https://en.cppreference.com/w/cpp/error/exception
https://stackoverflow.com/questions/25163105/stdexcept-vs-exception-headers-in-c

Conceptual Structure
Exceptions are treated like lvalues
Limited type conversions exist (pay attention to them):

nonconst to const
other conversions we will not cover in the course
catch(exception declaration)

try {
 // Code that may throw an exception
} catch (/* exception type */) {
 // Do something with the exception
} catch (...) { // any exception
 // Do something with the exception
}
///////////
c(){
if (something happen){throw exception } //action at b
}

1
2
3
4
5
6
7
8
9

10
11

https://en.cppreference.com/w/cpp/language/try_catch
7

http://https//en.cppreference.com/w/cpp/language/try_catch

Multiple catch options

This does not mean multiple catches will happen, but rather that
multiple options are possible for a single catch

flow? main()--> a(try-catch but different) -->c(throw)

#include <iostream>
#include <vector>

auto main() -> int {
 auto items = std::vector<int>{};
 try {
 items.resize(items.max_size() + 1);
 } catch (std::bad_alloc& e) {
 std::cout << "Out of bounds.\n";
 } catch (std::exception&) {
 std::cout << "General exception.\n";
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13

8

Rethrow
When an exception is caught, by default the catch will be the
only part of the code to use/action the exception
What if other catches (lower in the precedence order) want to
do something with the thrown exception?

try {
 try {
 try {
 throw T{};
 } catch (T& e1) {
 std::cout << "Caught\n";
 throw;
 }
 } catch (T& e2) {
 std::cout << "Caught too!\n";
 delete ptr;
 //throw another type of exception
 //overflow might be caused by invalid argument
 throw or throw std::invalide_argument();
 }
} catch (...) {
 delete ptr;
 std::cout << "Caught too!!\n";
 throw; OR throw std::invalide_argument(); //transfer to another type
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

9

Catching the right way

Throw by value, catch by const reference
Ways to catch exceptions:

By value (no!)
By pointer (no!)
By reference (yes)

References are preferred because:
more efficient, less copying (exploring today)
no slicing problem (related to polymorphism, exploring later)

(Extra reading for those interested)

https://blog.knatten.org/2010/04/02/always-catch-exceptions-
by-reference/

10

Catch by value is inefficient
#include <iostream>

class Giraffe {
 public:
 Giraffe() { std::cout << "Giraffe constructed" << '\n'; }
 Giraffe(const Giraffe &g) { std::cout << "Giraffe copy-constructed" << '\n'; }
 ~Giraffe() { std::cout << "Giraffe destructed" << '\n'; }
};

void zebra() {
 throw Giraffe{};
}

void llama() {
 try {
 zebra();
 } catch (Giraffe g) {
 std::cout << "caught in llama; rethrow" << '\n';
 throw;
 }
}

int main() {
 try {
 llama();
 } catch (Giraffe g) {
 std::cout << "caught in main" << '\n';
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

demo456-by-value.cpp 11

Catch by value inefficiency
#include <iostream>

class Giraffe {
 public:
 Giraffe() { std::cout << "Giraffe constructed" << '\n'; }
 Giraffe(const Giraffe &g) { std::cout << "Giraffe copy-constructed" << '\n'; }
 ~Giraffe() { std::cout << "Giraffe destructed" << '\n'; }
};

void zebra() {
 throw Giraffe{};
}

void llama() {
 try {
 zebra();
 } catch (const Giraffe& g) {
 std::cout << "caught in llama; rethrow" << '\n';
 throw;
 }
}

int main() {
 try {
 llama();
 } catch (const Giraffe& g) {
 std::cout << "caught in main" << '\n';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

demo457-by-ref.cpp
12

Exception safety levels

This part is not specific to C++:
its about writing safe code (exception safe)

if it keeps program in consist state even after
exception thrown

Operations performed have various levels of safety

No-throw (failure transparency)
Strong exception safety (commit-or-rollback)
Weak exception safety (no-leak)
No exception safety

13

No-throw guarantee

Also known as failure transparency
Operations are guaranteed to succeed, even in exceptional
circumstances

Exceptions may occur, but are handled internally
No exceptions are visible to the client
This is the same, for all intents and purposes, as noexcept in C++
Examples:

Closing a file
Freeing memory
Anything done in constructors or moves (usually)
Creating a trivial object on the stack (made up of only ints)

14

Strong exception safety

Also known as "commit or rollback" semantics
Operations can fail, but failed operations are guaranteed to have no
visible effects
Probably the most common level of exception safety for types in C++
All your copy-constructors should generally follow these semantics
Similar for copy-assignment

Copy-and-swap idiom (usually) follows these semantics (why?)
Can be difficult when manually writing copy-assignment

15

Strong exception safety
To achieve strong exception safety, you need to:

First perform any operations that may throw, but
don't do anything irreversible
Then perform any operations that are irreversible,
but don't throw

Strong& operator=(Strong const& other)
{
 Strong temp(other);
 temp.swap(*this);
 return *this;
}

16

Basic exception safety

This is known as the no-leak guarantee: we can be sure that our
objects class invariants are not violated. Nothing more, nothing
less.
change in status of program before exception thrown.
Partial execution of failed operations can cause side effects, but:

All invariants must be preserved
No resources are leaked
data corruption would not happen : i.e. circle

Any stored data will contain valid values, even if it was different
now from before the exception

Does this sound familiar? A "valid, but unspecified state"
Move constructors that are not noexcept follow these semantics 17

No exception safety
No guarantees
Don't write C++ with no exception safety

Very hard to debug when things go wrong
Very easy to fix - wrap your resources and attach
lifetimes

This gives you basic exception safety for free

struct DoubleOwnership {
 std::unique_ptr<int> pi;
 std::unique_ptr<double> pd;

 DoubleOwnership(int* pi_, double* pd_) : pi{pi_},
pd{pd_} {}
}; //`std::bad_alloc`

int foo() {
 DoubleOwnership object { new int(42), new double(3.14)
};
 //...
}

18

in Practice

What if g() throw exception

C++ classes can be used to avoid such leaks:
C++ provides constructor and destructor

Text

Could not open file, throw exception

19

noexcept specifier

Specifies whether a function could potentially throw
It doesn't not actually prevent a function from throwing an
exception

STL functions can operate more efficiently on noexcept functions

https://en.cppreference.com/w/cpp/language/noexcept_spec

class S {
 public:
 int foo() const; // may throw
}

class S {
 public:
 int foo() const noexcept; // does not throw
}

1
2
3
4
5
6
7
8
9

20

https://en.cppreference.com/w/cpp/language/noexcept_spec

Testing exceptions

CHECK_THROWS(expr);

CHECK_THROWS_AS(expr, type);

REQUIRES_THROWS* also available.

Checks expr throws an exception.

Checks expr throws type (or
somthing derived from type).

CHECK_NOTHROW(expr);
Checks expr doesn't throw an

exception.

21

Testing exceptions

REQUIRES_THROWS* also available.

CHECK_THROWS_MATCHES(
 expr,
 type,
 Matchers::Message("message"));

CHECK_THROWS_AS and
CHECK_THROWS_WITH

in a single check.

namespace Matchers = Catch::Matchers;
CHECK_THROWS_WITH(
 expr,
 Matchers::Message("message"));

Checks expr throws an exception
with a message.

22

Feedback

23

