COMP6771
Advanced C++ Programming

Week 4.2
Exceptions

What good can using exceptions do for me?



In this lecture

Syn vs Asyn
Why?

e Sometimes our programs need to deal with unexpected
runtime errors and handle them gracefully.

What?

e Exception object

 Throwing and catching exceptions
e Rethrowing

* noexcept



Let's start with an example
What does this produce?
*malloc(~~~): cant allocate ? or int printf( )
long strtoul() --> erno ERANGE

main() ---> A()--->B()--->C(){return 0 or -1} Can B() or A() handle ?

1 #include <iostream>
2 #include <vector>

3

4 auto main() -> int {

5 std: :cout << "Enter -1 to quit\n";

6 std: :vector<int> items{97, , - }i

7 std::cout << "Enter an index: ":

8 for (int print index; std::cin >> print index; ) {
9 1f (print index == ) break;

10 std::cout << items.at(print index) << '\n';

11 std::cout << "Enter an index: ";

12 }

13 } demo455-exceptioni.cpp



00 O U1 s WDN K

N PR RPRRRPRRPRRFPRBRB RF B
©O VWO JOU b WNBRER OV

Let's start with an example

What does this produce?

#include <iostream>
#include <vector>
auto main() -> int {
std::cout << "Enter -1 to quit\n";
std: :vector<int> items{97, , , };
std::cout << "Enter an index: ";
for (int print index; std::cin >> print index; ) {
1f (print index == ) break;
try {
std::cout << items.at(print index) << '\n';
items.resize(items.size() + ) ;
} catch (const std::out of range& e) {
std::cout << "Index out of bounds\n":
} catch (...) {
std::cout << "Something else happened’;
}
std::cout << "Enter an index: ";
}
}

demo455-exception2.cpp



Exceptions: What & Why?

e What:
= Exceptions: Are for exceptional circumstances
o Happen during run-time anomalies (things not going to plan Al)
= Exception handling:

o Run-time mechanism

o C++ detects a run-time error and raises an appropriate exception

o Another unrelated part of code catches the exception, handles it,
and potentially rethrows it

e Why:
= Allows us to gracefully and programmatically deal with anomalies, as
opposed to our program crashing.




What are "Exception Objects"?

throw- -Obj; try, catch-handler

standard ++ & library report error by throwing exception

Any type we derive from std::exception

= throw std::out_of_range("Exception!");
= throw std::bad_alloc("Exception!");

Why std:.exception? Why classes?
#include <exception> for std::exception object

#include <stdexcept> for objects that inherit std::exception
typeinfo> and <new> are other exception° all in namespace std

exceptlon

Ioglc_error

domain_error

invalid_argument

untlme _error

ange_erro
nderflow_erro


https://en.cppreference.com/w/cpp/error/exception
https://stackoverflow.com/questions/25163105/stdexcept-vs-exception-headers-in-c

o

- O W 0O JOo6 O & WD K-

Conceptual Structure

e Exceptions are treated like lvalues
e Limited type conversions exist (pay attention to them):

® nonconst to const
m other conversions we will not cover in the course
m catch( )

try {

} catch ( ) {

} catch (...) {

}

C ()1

LE (something, BARRSRLIERERN,SE6RELOn )


http://https//en.cppreference.com/w/cpp/language/try_catch

Multiple catch options

This does not mean multiple catches will happen, but rather that
multiple options are possible for a single catch

flow? main()--> a(try-catch but different) -->c(throw)

1 #include <iostream>
2 #include <vector>

3

4 auto main() -> int {

5 auto items = std::vector<int>{};

6 try {

7 items.resize(items.max size() + 1);
8 } catch (std::bad alloc& e) {

9 std::cout << "Out of bounds.\n":

10 } catch (std::exception&) {

11 std: :cout << "General exception.\n";
12 }

13 }



Rethrow
e When an exception is caught, by default the catch will be the

only part of the code to use/action the exception
e What if other catches (lower in the precedence order) want to
do something with the thrown exception?

try {

1

2 try {

3 try {

4 throw T{};

5 } catch (T& el) {

6 std::cout << "Caught\n";

7 throw;

8 }

) } catch (T& e2) {

10 std: :cout << "Caught too!\n";
11 delete ptr;

12

13

14 throw or throw std::invalide argument();
15 }

16 } catch (...) {

17 delete ptr;

18 std: :cout << "Caught too!!\n";

19 throw; OR throw std::invalide argument();
AV



Catching the right way

* Throw by value, catch by const reference
e \Ways to catch exceptions:

= By value (no!)
= By pointer (no!)
= By reference (yes)
e References are preferred because:

m more efficient, less copying (exploring today)
= no slicing problem (related to polymorphism, exploring later)

(Extra reading for those interested)

e https://blog.knatten.org/2010/04/02/always-catch-exceptions-
by-reference/



0O O U1l & WIDN -

N NDNMNNRRRPRRRRR B P B
WNRFROWWMNOUED WNEFE OV

24
25
26
27
28
29

Catch by value is inefficient

#include <iostream>

class Giraffe {
public:
Giraffe() { std::cout << "Giraffe constructed" <<

Giraffe(const Giraffe &qg)

~Giraffe() { std::cout << "Giraffe destructed" <<

}i:

void zebra() {
throw Giraffe{};

}

void llama() {
try {

}

zebra();

catch (Giraffe g) {

std::cout << "caught in llama; rethrow" << '\n';
throw;

}
}
int main() {
try {
llama();
} catch (Giraffe g) {
std::cout << "caught in main" << '\n';
}
}

demo456-by-value.cpp

|\n|;

I\nl;

}

{ std::cout << "Giraffe copy-constructed" <<

}

|\n|;

}

11



Catch by value inefficiency

1 #include <iostream>

2

3 class Giraffe {

4 public:

5 Giraffe() { std::cout << "Giraffe constructed" << '\n'; }
6 Giraffe(const Giraffe &g) { std::cout << "Giraffe copy-constructed" << '\n'; }
7 ~Giraffe() { std::cout << "Giraffe destructed" << '\n'; }
8 }i;

9

10 void zebra() {

11 throw Giraffe{};

12 }

13

14 void llama() {

15 try {

16 zebra();

17 } catch (const Giraffe& g) {

18 std::cout << "caught in llama; rethrow" << '\n';

19 throw;
20 }
21 }
22
23 int main() {
24 try {
25 llama();
26 } catch (const Giraffe& g) {
27 std::cout << "caught in main" << '\n';
28 }
29 }

demo457-by-ref.cpp



Exception safety levels

This part is not specific to C++:
its about writing safe code (exception safe)

m if it keeps program in consist state even after
exception thrown

Operations performed have various levels of safety

® No-throw (failure transparency)

B Strong exception safety (commit-or-rollback)
m \Weak exception safety (no-leak)

® No exception safety



No-throw guarantee

e Also known as failure transparency
e Operations are guaranteed to succeed, even in exceptional
circumstances

= Exceptions may occur, but are handled internally

* No exceptions are visible to the client
e This is the same, for all intents and purposes, as noexcept in C++
e Examples:

m Closing a file

= Freeing memory

= Anything done in constructors or moves (usually)

= Creating a trivial object on the stack (made up of only ints)



Strong exception safety

e Also known as "commit or rollback" semantics

e Operations can fail, but failed operations are guaranteed to have no
visible effects

e Probably the most common level of exception safety for types in C++

e All your copy-constructors should generally follow these semantics

e Similar for copy-assignment

= Copy-and-swap idiom (usually) follows these semantics (why?)
® Can be difficult when manually writing copy-assignment



Strong exception safety

e To achieve strong exception safety, you need to:

m First perform any operations that may throw, but
don't do anything irreversible

= Then perform any operations that are irreversible,
but don't throw

I allocate !'z | deallocate memory) Strong& operator=(Strong const& other)
\

truct {
1, 4 COP]T'S s des old T's Strong temp(other);
temp.swap(*this);

® O O IO ® 0 ¢ .}

1

return *this;

}
Potentially Throwing  Irreversible Mutations

16



Basic exception safety

e This is known as the no-leak guarantee:

e change in status of program before exception thrown.
e Partial execution of failed operations can cause side effects, but:

= All invariants must be preserved
= No resources are leaked
® data corruption would not happen : i.e. circle

e Any stored data will contain valid values, even if it was different
now from before the exception

= Does this sound familiar? A "valid, but unspecified state"
= Move constructors that are not noexcept follow these semantics



No exception safety

* No guarantees
e Don't write C++ with no exception safety

= \ery hard to debug when things go wrong
= \ery easy to fix - wrap your resources and attach
lifetimes

o This gives you basic exception safety for free



In Practice

void f(char const *n) {
FILE *outf = fopen(n, "w"); .
if (outf != nullptr) { C++ classes can be used to avoid such leaks:

fprintf(outf, "The value is: %d", g()); :
felose(OutF); C++ provides constructor and destructor

What if g() throw exception

class file {
public:
file(char const *name, char const *mode);
~tile() noexcept;
bool is open() const noexcept;
void put(int 1);
void put(char const *s);

[/
file::file(char const *name, char const *mode): private:
pf {fopen(name, mode)} { FILE *of;

The constructor attempts to open a file with a particular name
and operating mode (such as reading or writing):

}
The destructor closes the file:

file::~file() noexcept { file::file(char const *name, char const *mode):
if (pf != nullptr) { pf {fopen(name, mode)} {

fclose(pf); : ‘ '
} (pf) if (pf == nullptr) { |d not open file, throw exception

throw catastrophic_failure();
}

}



noexcept specifier

e Specifies whether a function could potentially throw

e |t doesn't not actually prevent a function from throwing an
exception

e https.//en.cppreference.com/w/cpp/language/noexcept_spec

e STL functions can operate more efficiently on noexcept functions

class S {
public:
int foo() const;

}

class S {
public:
int foo() const noexcept;

}

O 00O J o O WD B


https://en.cppreference.com/w/cpp/language/noexcept_spec

Testing exceptions

Checks expr doesn't throw an

CHECK_NOTHROW (expr) ; exception

CHECK THROWS (expr) ; Checks expr throws an exception.

Checks expr throws type (or

CHECK THROWS AS(expr, type): : :
— _AS(exp Ype) somthing derived from type).

REQUIRES THROWS#* also available.

21



Testing exceptions

namespace Matchers = Catch::Matchers;

CHECK THROWS WITH ( Checks expr throws an exception
expr, with a message.
Matchers: :Message( ' 'message"));

CHECK THROWS MATCHES ( CHECK THROWS AS and

i;{gz , CHECK_THROWS_WITH
Matchers: :Message("message")); in a single check.

REQUIRES THROWS#* also available.

22






