COMP6771
Advanced C++ Programming

Week 5.2
Smart Pointers

In this lecture

Why?

e Managing unnamed / heap memory can be dangerous, as
there is always the chance that the resource is not
released / free'd properly. We need solutions to help with
this.

What?

e Smart pointers
o atte—ptr Unique pointer, shared pointer, Weak
e Partial construction

Recap: RAIl - Making unnamed objects safe

1 1

2 2 #include "myintpointer.h"

3 class MyIntPointer { 3

4 public: 4 MyIntPointer::MyIntPointer(int* value): value {value} {}
5 5

6 MyIntPointer(int* value); 6 int* MyIntPointer::GetValue() {
7 7 return value

8 8 }

9 ~MyIntPointer(); 9
10 10 MyIntPointer::~MyIntPointer() {
11 1int* GetValue(); 11
12 12 delete value ;
13 private: 13 }
14 int* value ;
15 };

void fn() {

MyIntPointer p{new int{5}};

MyIntPointer g{p.GetValue()}; demo551 -safepointer.cpp

0O o O s W DN K-

[——— L, controlled object
. controlled object _:-_:_:_ of type T

' of type T

Responsible to delete ptr; else, memory leaks. -)

opy was made, then which of the two has ownership?

Smart Pointers

auto_ptr vs unique_ptr

manage the lifetime of its resources

allocate/deallocate according to RAIl (release resourse)

support automatic memory management

Ways of wrapping unnamed (i.e. raw pointer) heap objects in named stack objects so that
object lifetimes can be managed much easier

Introduced in C++11

use std::unique_prt for exclusive ownership resource management.

Usually two ways of approaching problems:

= unique_ptr + raw pointers ("observers")
® shared_ptr + weak_ptr/raw pointers

Type Shared ownership | Take ownership
std::unique_ptr<T> |No Yes
raw pointers e e
std::shared_ptr<T> |Yes Yes
std::weak_ptr<T> No No

Unique pointer

e std::unique_pointer<T>

= The unique pointer owns the object that handles DMA in restricted scope
= \When the unique pointer is destructed, the underlying object is too

= Can be parameterized with deleter:std::unique_pointer<T, deleter>

= No additional/very tiny overhead compared to raw

 raw pointer (observer)

= Unique Ptr may have many observers

= This is an appropriate use of raw pointers (or references) in C++

= Once the original pointer is destructed, you must ensure you don't access the raw
pointers (no checks exist)

® These observers do not have ownership of the pointer

Also note the use of 'nullptr' in C++ instead of NULL

‘heap

-

controlled object A — | controlled object
= oftypeT 3 oftypeT

template<class T>
class unique_ptr{
T *p_ = nullptr;

~unique_ptri){
delete p_;
} unique_ptr iIs moveable, with a move constructor to null
1 out the source pointer.

‘stack | heap

controlled object
.---'_'_'_'_'.'.'-_:-_'-‘-'-':-“-JI of type T

0O o Ol WD K

Unique pointer: Usage

1 void my func() 1 #include <memory>
2 { y)
3 int* valuePtr = new int(15); 3 void my func()
4 int x = ; 4 {
5 5 std::unique ptr<int> valuePtr(new int(15));
6 if (x == 45) 6 int x = 45;
7 return; 7
8 8 if (x ==)
9 delete valuePtr; 9 return;
10 } 10
11 11 }
12 int main() 12
13 { 13 int main()
14 } 14 {
15 }
1 #include <memory>
std::unique ptr<int> valuePtr(new int(47)); 2 #include <iostream>
3
std::unique ptr<int> valuePtr; . .
valuePtr.reset(new int(47)); 4 1nt main() { . . '
5 auto upl = std::unique ptr<int>{new 1int};
, , _ 6 auto up2 = upl;
std::unique ptr<std::string> strPtr(new std::string); . .
strPtr->assign("Hello world"); 7 std: :unlque_ptr<lnt> up3 ’
38 up3 = up?2;
9
.0 up3.reset(upl.release());
1 auto up4 = std::move(up3);
.2 std::cout << upd.get() << "\n";
.3 std::cout << *up4 << "\n";
14 std::cout << *upl << "\n";
15 }

demo552-uniquet.cpp

Observer Ptr: Usage

1 #include <memory> 1 #include <iostream>
2 #include <iostream> 2 GANPIIEE SHEmerE
3 #include <utility>
3 4
4 int main() { 5 int main()
5 auto upl = std::unique ptr<int>{new int{0}}; 6 {
6 *upl = . 7 std::unique ptr<int> valuePtr(new int(15));
' " . 8 std: :unique ptr<int> valuePtrNow(std::move(valuePtr));
7 std::cout << *upl << "\n"; . —
8 auto opl = upl.get(); 10 std::cout << "valuePtrNow = " << *valuePtrNow << '\n';
0 *Opl = . 11 std: :cout << "Has valuePtr an associated object? "
10 std::cout << *opl << "\n"; L2 << std::boolalpha
13 << static cast<bool>(valuePtr) << '\n';
11 upl.reset(); 14 3 -
12 std::cout << *opl << "\n";
13 }

demo553-observer.cpp

Can we remove "new"
completely?

Unique Ptr Operators

This method avoids the need for "new". It has other benefits that we will explore.

IS safe for creating temporaries, whereas with explicit use of new you have to
remember the rule about not using unnamed temporaries.

make_unique prevents the unspecified-evaluation-order leak triggered by expressions like

1 foo(unique ptr<T>(new T()), unique ptr<uU>(new U()));
2
3 foo(make_unique<T>(), make_unique<U>());

1 #include <iostream>
2 #include <memory>

3
g auto main() —>Té&% {
6
& auto* silly string = new std::string{"Hi"};
8 auto upl = std::unique ptr<std::string>(silly string);
9 auto upll = std::unique ptr<std::string>(silly string);
10
11
12 auto up2 = std::unique ptr<std::string>(new std::string("Hello"));
13
14
15 auto up3 = std::make unique<std::string>("Hello");
16
17 std::cout << *up2 << "\n"; :
L8 std: scout << *up3 << "\n"; demo554-unique2.cpp
19
20
21 }

e https://stackoverflow.com/questions/37514509/advantages-of-using-stdmake-unique-over-new-operator
e https://stackoverflow.com/questions/20895648/difference-in-make-shared-and-normal-shared-ptr-in-c

https://stackoverflow.com/questions/37514509/advantages-of-using-stdmake-unique-over-new-operator
https://stackoverflow.com/questions/20895648/difference-in-make-shared-and-normal-shared-ptr-in-c

mﬁmxﬁ“‘ controlled
Deleter \ element of type T

3

-

template<class T,
class Deleter>
class unique_ptr{
T *p_ = nullptr;
Deleter d_;

~unique_ptr(){
if(p_) d_(p_);

}
}
template<class T, class Deleter = std::default _delete<T=>>
clas ique_ptr{
T *p_ = nullptr;

DeleEer d_;

~unique_ptr(){
LT(p_) a_(p_);

} unique ptr is always a template of

two parameters, with the second
set as aefault It not passea In.

}

template<class T>

struct default_delete {

10 operator T * const = : : .G
delete p: O(T *p) ¢ This Is even customizable: If

} Deleter:.pointer names a type, then the

} member will be of that type instead of *T.

Unique_ ptr Array
can be specialized for array std::unique_pointer<T []>
unique_ptr disposes of the controlled object by calling deleter .what what about unique_ptr to array of objects?

1 auto pArr = std::unique ptr<MyClass[]>(new MyClass[10]); ' |
2 _] controlled
—= '::::;;;:Jx,jelement of type T
2 |
controlled
element of type T
template<class T> controlled
class unique_ptr<T[]>{ element of type T
T *p_ = nullptr; .
1 #include <iostream> ﬂﬂ?ﬁiﬁt?;;
2 #include <memory> -
3
4 int main()
5 { There is a specialization for array types.
6 const int size = ;
7 std::unique ptr<int[]> fact(new int[size]);
8
9 for (int i = 0; i < size; ++i) {
10 fact[i] = (1 == 0) ? : 1 * fact[i-1];
11 }
12
13 for (int i = 0; i < size; ++i) {
14 std::cout << i << "! = " << fact[i] << '\n';
15 }
I

12

Shared pointer

e std::shared_pointer<T>
e Several shared pointers share ownership of the object
= A reference counted pointer
= \When a shared pointer is destructed, if it is the only shared pointer

left pointing at the object, then the object is destroyed
= May also have many observers

o Just because the pointer has shared ownership doesn't mean the
observers should get ownership too - don't mindlessly copy it

o std::weak ptr<T>
= \Weak pointers are used with share pointers when:

© You don't want to add to the reference count
o You want to be able to check if the underlying data is still valid
before using it.

13

shared_pfr

Pointerto T

Pointer to
Control Block

control
block

Data
T Object

Control Block

Reference Count

Weak Count

Custom Deleter,
Allocator,etc

Iji controlled object

-

reference count

Weak ref count
custom deleter?

ptr to controlled

shared ptr, unlike unique ptr, places a layer of indirection between the physical heap-
allocated object and the notion of ownership.

shared ptr instances are essentially participating in ref-counted ownership of the control
block.
The control block itself is the sole arbiter of what it means to “delete the controlled object.”

- | controlled DbjECt
This pointer does not play of type

any role in ownership! class D

o
P

I J. reference count

=| | Weak ref count |

.: | default_delete<D>
= ptr to controlled

. object of type D

14

1 #include <iostream>
2 #include <memory>

3

0 ~J O O b

11
12
13
14
15 }

auto main() -> int {

auto x = std
std::cout <<
std::cout <<
X.reset();

std: :cout <<
std::cout <<
y.reset();

std: :cout <<
std: :cout <<

Shared pointer: Usage

: :make shared<int>(5);

"use count: " << x.use count() <<
"value: " << *x << "\n";

"use count: " << y.use count() <<
"Value: " << *y << ll\nll;

"use count: << x.use count() <<
"Value: 1" << *Y << ll\nll;

demo555-shared.cpp

Can we remove "new" completely?

ll\nll ;

ll\nll ;

ll\nll ;

15

1 #include <iostream>

WeakK Pointer

2 #include <memory>
3
4 auto main() -> int {
5 auto x = std::make shared<int>(1);
6
7 auto wp = std::weak ptr<int>(x);
8
9 auto y = wp.lock();
0 if (y 1=) A
|1
12 std::cout << "Attempt 1: " << *y << '\n’';
K }
1 struct Person;
demo556-weak.c ’
4) PP 2 Text
3 struct Team({
4 shared ptr<Person> goalKeeper;
5 ~Team() {cout<<"Team destructed.";}
on G 6 };
If Barca goes out of scope, itis | [l ¢ percony
not deleted since the managed s shared_ptr<Team> team;
object is still pointed by 12 , ~Person() {cout<<"Person destructed.";}
valdee.team. When Valdes goes 11
out of scope, its managed (5 e man O
object is not deleted either as it 14
. . 15 auto Barca = make shared<Team>();
IS pOIﬂtEd by Barca.goalkeeper. 16 auto Valdes = make shared<Person>();
17
18 Barca->goalKeeper = Valdes;
19 Valdes->team = Barca;
20
21 return 0;
22

2o)

0O J o Ul WDN -

NNMNNRPRRRRRRRRRP &
NP OWOWNOU D WNE OV

struct Person;

struct Team{

}:

shared_ptrs

manager object managed object

pointer

shared count: 3
weak count: 2

shared ptr<Person> goalKeeper;
~Team() {cout<<"Team destructed.";}

struct Person{

}:

weak ptr<Team> team;

~Person() {cout<<"Person destructed. ;}

int main(){

auto Barca =
auto Valdes =

make shared<Team>();
make shared<Person>();

Barca->goalKeeper = Valdes;
Valdes->team = Barca;

return 0O; i

When to use which type

 Unique pointer vs shared pointer

= You almost always want a unique pointer over a shared pointer
= Use a shared pointer if either:

o An object has multiple owners, and you don't know which
one will stay around the longest

© You need temporary ownership (outside scope of this course)

o This is very rare

std: :unique ptr

std: :make unique

std: :shared ptr

szﬂ::make_shared

17

Smart pointer examples

e |inked list
e Doubly linked list
* [ree

e DAG (mutable and non-mutable)

e Graph (mutable and non-mutable)

e Twitter feed with multiple sections (eg. my
posts, popular posts)

“Leak freedom 1n C++” poster

Strateg Natural examples | Cost | Rough frequency

Local and
member objects
- directly owned

Zero: Tied directly to 0(80%)
another lifetime of objects

1. Prefer scoped lifetime by default
{locals, members)

2, Else prefer make_unique & Same as new/delete &
unique_ptr or a container, if the object Implementations malloc/free
must have its own lifetime (i.e., heap) and of trees, lists Automates simple heap

ownership can be unique w/o owning cycles use in a library 0(20%)

3. Else prefer make _shared & Node-hased Same as manual of objects
shared_ptr, if the object must have its DAGS, Incl. trees reference counting (RC)

own lifetime (i.e., heap) and shared that share out Automates shared
ownership w/o owning cycles references object use in a library

Don’t use owning raw *'s == don’t use explicit delete

Don’'t create ownership cycles across modules by owning “upward” (violates layering)
Use weak ptr to break cycles

smart pointers, and minimize raw pointers or say big NO to raw
Raw pointer should be your default parameters and return types
sometime trade-off smart vs raw

argument passing; but references can't be null, so are preferable
A points to B, B points to A, or A->B->C->A

raw vs smart --->Premature Pessimizzation

if an entity must take a certain kind of ownership of the object, always use smart pointers - the one that gives you the kind of
ownership you need.

If there is no notion of ownership, you may ignore use smart pointers but.

log error();

}

1 void PrintObject(shared ptr<const Object> po)
2 A

3 if(po)

4 po->Print();

5 else

6

7

8

O

void PrintObject(const Object* po)
{

=
=)

if (po)
po->Print();
else
log error();

e
o> W DN
-

20

http://www.boost.org/doc/libs/1_47_0/libs/smart_ptr/smart_ptr.htm

O O oo ~Jo Ul s LW DN K

Stack unwinding

 Stack unwinding is the process of exiting the stack frames until we find an
exception handler for the function
» This calls any destructors on the way out

= [f an exception is thrown during stack unwinding, std::terminate is called

Not safe Not safe Safe
void g() { 1 void g() { 1 void g() {
throw std::runtime error{""}; 2 throw std::runtime error{""}; 2 throw std::runtime error{""};
} 3} 3}
4 4
int main() { 5 int main() { 5 int main() {
auto ptr = new int{5}; 6 auto ptr = new int{5}; 6 auto ptr = std::make unique<int>(5);
g(); 7 auto uni = std::unique ptr<int>(ptr 7 g();
8 g(); 8 }
delete ptr;)
} 10 }

21

Exceptions & Destructors

e During stack unwinding, std::terminate() will be called if an
exception leaves a destructor

e The resources may not be released properly if an exception
leaves a destructor

o All exceptions that occur inside a destructor should be handled
inside the destructor

e Destructors usually don't throw, and need to explicitly opt in to
throwing

» STL types don't do that

Partial construction

®
® challenge for language designers wanting to provide guarantees !
around invariants, immutability and concurrency-safety, and non- ;
nullability. ;
* What happens if an exception is thrown halfway through a constructor? ;
® The C++ standard: "An object that is partially constructed or .
partially destroyed will have destructors executed for all of its fully =
constructed subobjects" L
m A destructor is not called for an object that was partially 12
constructed i.e. 17
m Except for an exception thrown in a constructor that delegates i
(why?) i
- 23
= ‘this' is leaked out of a constructor to some code that gg
assumes the object has been initialized. 27
= A failure partway through an object’s construction leads to 33

its destructor or finalizer running against a partially- 31
constructed object. [tread with care]

30

32

#include <exception>

class my int {

public:
my int(int const i) : i {i} {
if (1 == 2) {
throw std::exception();
}
}
private:
int i ;

}i:

class unsafe class {
public:
unsafe class(int a, int b)
: a {new my int{a}}
, b {new my int{b}}
{}

~unsafe class() {
delete a_;
delete b ;
}
private:
my int* a_ ;
my int* b ;
i

int main() {
auto a = unsafe class(!,) ;

}

demo557-bad.cpp 23

Partial construction: Solution

e Option 1: Try / catch in the constructor

= Very messy, but works (if you get it right...)
= Doesn't work with initialiser lists (needs to be in the body)
e Option 2:
= An object managing a resource should initialise the resource last
o The resource is only initialised when the whole object is
o Consequence: An object can only manage one resource

o If you want to manage multiple resources, instead manage
several wrappers , which each manage one resource

0 ~JOo O s WDN K

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#include <exception>
#include <memory>

class my int {
public:
my int(int const 1)
i {i} {
if (1 == 2) {
throw std::exception();
}
}

private:
int 1 ;

}i:

class safe class {

public:
safe class(int a, int b)
: a_ (std::make unique<my int>(a))
, b (std::make unique<my int>(b))
{}

private:
std::unique ptr<my int> a ;
std::unique ptr<my int> b ;

}i

int main() {
auto a = safe class(l, 2);

}

demo558-partiall.cpp

24

make shared and make unique

make shared and make unique wrap raw new, just as ~shared ptr and
~unique ptr wrap raw delete.

Never touch raw pointers with hands, and then never need to worry about
leaking them.

make shared can be performance optimization.

func(value) |s an independent owner of the resource
Deletes the resource automatically at the end of func

func (pointer™) Borrows the resource
The resource could be empty
Must not delete the resource

Borrows the resource
The resource could not be empty
Must not delete the resource

func(std::unique_ptr) Is an independent owner of the resource
Deletes the resource automatically at the end of func

func (shared ptr) Is a shared owner of the resource
May delete the resource at the end of func

25

