
COMP6771
Advanced C++ Programming

Week 5.2
Smart Pointers

1

In this lecture

Why?

Managing unnamed / heap memory can be dangerous, as
there is always the chance that the resource is not
released / free'd properly. We need solutions to help with
this.

What?

Smart pointers
auto_ptr; Unique pointer, shared pointer, Weak
Partial construction

2

Recap: RAII - Making unnamed objects safe

// myintpointer.h

class MyIntPointer {
 public:
 // This is the constructor
 MyIntPointer(int* value);

 // This is the destructor
 ~MyIntPointer();

 int* GetValue();

 private:
 int* value_;
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// myintpointer.cpp
#include "myintpointer.h"

MyIntPointer::MyIntPointer(int* value): value_{value} {}

int* MyIntPointer::GetValue() {
 return value_
}

MyIntPointer::~MyIntPointer() {
 // Similar to C's free function.
 delete value_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Don't use the new / delete keyword in your own code
We are showing for demonstration purposes

void fn() {
 // Similar to C's malloc
 MyIntPointer p{new int{5}};
 // Copy the pointer;
 MyIntPointer q{p.GetValue()};
 // p and q are both now destructed.
 // What happens?
}

1
2
3
4
5
6
7
8

demo551-safepointer.cpp

3

4

Smart Pointers
auto_ptr vs unique_ptr
manage the lifetime of its resources
allocate/deallocate according to RAII (release resourse)
support automatic memory management
Ways of wrapping unnamed (i.e. raw pointer) heap objects in named stack objects so that
object lifetimes can be managed much easier
Introduced in C++11
use std::unique_prt for exclusive ownership resource management.
Usually two ways of approaching problems:

unique_ptr + raw pointers ("observers")
shared_ptr + weak_ptr/raw pointers

Type Shared ownership Take ownership
std::unique_ptr<T> No Yes
raw pointers No No
std::shared_ptr<T> Yes Yes
std::weak_ptr<T> No No

5

Unique pointer

std::unique_pointer<T>
The unique pointer owns the object that handles DMA in restricted scope h

When the unique pointer is destructed, the underlying object is too
Can be parameterized with deleter:std::unique_pointer<T, deleter>
No additional/very tiny overhead compared to raw

raw pointer (observer)
Unique Ptr may have many observers
This is an appropriate use of raw pointers (or references) in C++
Once the original pointer is destructed, you must ensure you don't access the raw
pointers (no checks exist)
These observers do not have ownership of the pointer

Also note the use of 'nullptr' in C++ instead of NULL

6

7

Unique pointer: Usage

#include <memory>
#include <iostream>

int main() {
 auto up1 = std::unique_ptr<int>{new int};
 auto up2 = up1; // no copy constructor
 std::unique_ptr<int> up3;
 up3 = up2; // no copy assignment

 up3.reset(up1.release()); // OK
 auto up4 = std::move(up3); // OK
 std::cout << up4.get() << "\n";
 std::cout << *up4 << "\n";
 std::cout << *up1 << "\n";
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 demo552-unique1.cpp

void my_func()
{
 int* valuePtr = new int(15);
 int x = 45;
 // ...
 if (x == 45)
 return; // here we have a memory l
 // ...
 delete valuePtr;
}

int main()
{
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

#include <memory>

void my_func()
{
 std::unique_ptr<int> valuePtr(new int(15));
 int x = 45;
 // ...
 if (x == 45)
 return; // no memory leak anymore!
 // ...
}

int main()
{
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

std::unique_ptr<int> valuePtr(new int(47));

std::unique_ptr<int> valuePtr;
valuePtr.reset(new int(47));

//can be accessed just like when you would use a raw pointer
std::unique_ptr<std::string> strPtr(new std::string);
strPtr->assign("Hello world");

1
2
3
4
5
6
7
8

8

Observer Ptr: Usage
#include <memory>
#include <iostream>

int main() {
 auto up1 = std::unique_ptr<int>{new int{0}};
 *up1 = 5;
 std::cout << *up1 << "\n";
 auto op1 = up1.get();
 *op1 = 6;
 std::cout << *op1 << "\n";
 up1.reset();
 std::cout << *op1 << "\n";
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Can we remove "new"
completely?

demo553-observer.cpp

#include <iostream>
#include <memory>
#include <utility>

int main()
{
 std::unique_ptr<int> valuePtr(new int(15));
 std::unique_ptr<int> valuePtrNow(std::move(valuePtr));

 std::cout << "valuePtrNow = " << *valuePtrNow << '\n';
 std::cout << "Has valuePtr an associated object? "
 << std::boolalpha
 << static_cast<bool>(valuePtr) << '\n';
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

9

Unique Ptr Operators

#include <iostream>
#include <memory>

auto main() -> int {
 // 1 - Worst - you can accidentally own the resource multiple
 // times, or easily forget to own it.
 auto* silly_string = new std::string{"Hi"};
 auto up1 = std::unique_ptr<std::string>(silly_string);
 auto up11 = std::unique_ptr<std::string>(silly_string);

 // 2 - Not good - requires actual thinking about whether there's a leak.
 auto up2 = std::unique_ptr<std::string>(new std::string("Hello"));

 // 3 - Good - no thinking required.
 auto up3 = std::make_unique<std::string>("Hello");

 std::cout << *up2 << "\n";
 std::cout << *up3 << "\n";
 // std::cout << *(up3.get()) << "\n";
 // std::cout << up3->size();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21 https://stackoverflow.com/questions/37514509/advantages-of-using-stdmake-unique-over-new-operator

https://stackoverflow.com/questions/20895648/difference-in-make-shared-and-normal-shared-ptr-in-c

This method avoids the need for "new". It has other benefits that we will explore.

make_unique is safe for creating temporaries, whereas with explicit use of new you have to
remember the rule about not using unnamed temporaries.
make_unique prevents the unspecified-evaluation-order leak triggered by expressions like

demo554-unique2.cpp

foo(unique_ptr<T>(new T()), unique_ptr<U>(new U())); // unsafe*

foo(make_unique<T>(), make_unique<U>()); // exception safe // however no impact on efficiecy

1
2
3

TextText

10

https://stackoverflow.com/questions/37514509/advantages-of-using-stdmake-unique-over-new-operator
https://stackoverflow.com/questions/20895648/difference-in-make-shared-and-normal-shared-ptr-in-c

Text

Text

11

Unique_ptr Array

auto pArr = std::unique_ptr<MyClass[]>(new MyClass[10]);

1
2

can be specialized for array std::unique_pointer<T []>
unique_ptr disposes of the controlled object by calling deleter .what what about unique_ptr to array of objects?

#include <iostream>
#include <memory>

int main()
{
 const int size = 10;
 std::unique_ptr<int[]> fact(new int[size]);

 for (int i = 0; i < size; ++i) {
 fact[i] = (i == 0) ? 1 : i * fact[i-1];
 }

 for (int i = 0; i < size; ++i) {
 std::cout << i << "! = " << fact[i] << '\n';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

12

Shared pointer
std::shared_pointer<T>
Several shared pointers share ownership of the object

A reference counted pointer
When a shared pointer is destructed, if it is the only shared pointer
left pointing at the object, then the object is destroyed
May also have many observers

Just because the pointer has shared ownership doesn't mean the
observers should get ownership too - don't mindlessly copy it

std::weak_ptr<T>
Weak pointers are used with share pointers when:

You don't want to add to the reference count
You want to be able to check if the underlying data is still valid
before using it.

13

shared_ptr, unlike unique_ptr, places a layer of indirection between the physical heap-
allocated object and the notion of ownership.
shared_ptr instances are essentially participating in ref-counted ownership of the control
block.
The control block itself is the sole arbiter of what it means to “delete the controlled object.”

14

Shared pointer: Usage

#include <iostream>
#include <memory>

auto main() -> int {
 auto x = std::make_shared<int>(5);
 std::cout << "use count: " << x.use_count() << "\n";
 std::cout << "value: " << *x << "\n";
 x.reset(); // Memory still exists, due to y.
 std::cout << "use count: " << y.use_count() << "\n";
 std::cout << "value: " << *y << "\n";
 y.reset(); // Deletes the memory, since
 // no one else owns the memory
 std::cout << "use count: " << x.use_count() << "\n";
 std::cout << "value: " << *y << "\n";
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Can we remove "new" completely?

demo555-shared.cpp

15

Weak Pointer: Usage
#include <iostream>
#include <memory>

auto main() -> int {
 auto x = std::make_shared<int>(1); //no ownership
//ref to objected managed by shared pointer
 auto wp = std::weak_ptr<int>(x); // x owns the memory
//wp.use_count(); wp.expired();
 auto y = wp.lock();
 if (y != nullptr) { // x and y own the memory
 // Do something with y
 std::cout << "Attempt 1: " << *y << '\n';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14 demo556-weak.cpp struct Person;

struct Team{
 shared_ptr<Person> goalKeeper;
 ~Team(){cout<<"Team destructed.";}
};
struct Person{
 shared_ptr<Team> team;
 ~Person(){cout<<"Person destructed.";}
};

int main(){

 auto Barca = make_shared<Team>();
 auto Valdes = make_shared<Person>();

 Barca->goalKeeper = Valdes;
 Valdes->team = Barca;

 return 0;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

struct Person;

struct Team{
 shared_ptr<Person> goalKeeper;
 ~Team(){cout<<"Team destructed.";}
};
struct Person{
 weak_ptr<Team> team; // This line is changed.
 ~Person(){cout<<"Person destructed.";}
};

int main(){

 auto Barca = make_shared<Team>();
 auto Valdes = make_shared<Person>();

 Barca->goalKeeper = Valdes;
 Valdes->team = Barca;

 return 0;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

If Barca goes out of scope, it is
not deleted since the managed
object is still pointed by
valdee.team. When Valdes goes
out of scope, its managed
object is not deleted either as it
is pointed by Barca.goalkeeper.

Text

Own no resourse: orrows from shared ptr
break circular dependency
We have to convert it into Shared_ptr to use it
 wp.lock();

16

When to use which type

Unique pointer vs shared pointer
You almost always want a unique pointer over a shared pointer
Use a shared pointer if either:

An object has multiple owners, and you don't know which
one will stay around the longest
You need temporary ownership (outside scope of this course)
This is very rare

17

Smart pointer examples

Linked list
Doubly linked list
Tree
DAG (mutable and non-mutable)
Graph (mutable and non-mutable)
Twitter feed with multiple sections (eg. my
posts, popular posts)

18

19

Use Smart Pointers Efficiently but still use raw pointer and references ? they are not bad

 Best practice: , and minimize raw pointers or say big NO to raw
Raw pointer should be your default parameters and return types
sometime trade-off smart vs raw

argument passing; but references can't be null, so are preferable
A points to B, B points to A, or A->B->C->A

raw vs smart --->Premature Pessimizzation
if an entity must take a certain kind of ownership of the object, always use smart pointers - the one that gives you the kind of
ownership you need.
If there is no notion of ownership, you may ignore use smart pointers but.

smart pointers

void PrintObject(shared_ptr<const Object> po) //bad
{
 if(po)
 po->Print();
 else
 log_error();
}

void PrintObject(const Object* po) //good
{
 if(po)
 po->Print();
 else
 log_error();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

20

http://www.boost.org/doc/libs/1_47_0/libs/smart_ptr/smart_ptr.htm

Stack unwinding

Stack unwinding is the process of exiting the stack frames until we find an
exception handler for the function
This calls any destructors on the way out

Any resources not managed by destructors won't get freed up
If an exception is thrown during stack unwinding, std::terminate is called

void g() {
 throw std::runtime_error{""};
}

int main() {
 auto ptr = new int{5};
 g();
 // Never executed.
 delete ptr;
}

1
2
3
4
5
6
7
8
9

10

void g() {
 throw std::runtime_error{""};
}

int main() {
 auto ptr = std::make_unique<int>(5);
 g();
}

1
2
3
4
5
6
7
8

Not safe Safe

void g() {
 throw std::runtime_error{""};
}

int main() {
 auto ptr = new int{5};
 auto uni = std::unique_ptr<int>(ptr
 g();

}

1
2
3
4
5
6
7
8
9

10

Not safe

21

Exceptions & Destructors

During stack unwinding, std::terminate() will be called if an
exception leaves a destructor
The resources may not be released properly if an exception
leaves a destructor
All exceptions that occur inside a destructor should be handled
inside the destructor
Destructors usually don't throw, and need to explicitly opt in to
throwing

STL types don't do that

22

Partial construction
comparatively rare in the wild
challenge for language designers wanting to provide guarantees
around invariants, immutability and concurrency-safety, and non-
nullability.
What happens if an exception is thrown halfway through a constructor?

The C++ standard: "An object that is partially constructed or
partially destroyed will have destructors executed for all of its fully
constructed subobjects"
A destructor is not called for an object that was partially
constructed i.e. root/derived
Except for an exception thrown in a constructor that delegates
(why?)
 two common
‘this’ is leaked out of a constructor to some code that
assumes the object has been initialized. [dont do that]
A failure partway through an object’s construction leads to
its destructor or finalizer running against a partially-
constructed object. [tread with care]

#include <exception>

class my_int {
public:
 my_int(int const i) : i_{i} {
 if (i == 2) {
 throw std::exception();
 }
 }
private:
 int i_;
};

class unsafe_class {
public:
 unsafe_class(int a, int b)
 : a_{new my_int{a}}
 , b_{new my_int{b}}
 {}

 ~unsafe_class() {
 delete a_;
 delete b_;
 }
private:
 my_int* a_;
 my_int* b_;
};

int main() {
 auto a = unsafe_class(1, 2);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Spot the bug

demo557-bad.cpp 23

Partial construction: Solution

Safe approach: dont make it available until constructed fully
Option 1: Try / catch in the constructor

Very messy, but works (if you get it right...)
Doesn't work with initialiser lists (needs to be in the body)

Option 2:
An object managing a resource should initialise the resource last

The resource is only initialised when the whole object is
Consequence: An object can only manage one resource
If you want to manage multiple resources, instead manage
several wrappers , which each manage one resource

#include <exception>
#include <memory>

class my_int {
public:
 my_int(int const i)
 : i_{i} {
 if (i == 2) {
 throw std::exception();
 }
 }
private:
 int i_;
};

class safe_class {
public:
 safe_class(int a, int b)
 : a_(std::make_unique<my_int>(a))
 , b_(std::make_unique<my_int>(b))
 {}
private:
 std::unique_ptr<my_int> a_;
 std::unique_ptr<my_int> b_;
};

int main() {
 auto a = safe_class(1, 2);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

demo558-partial1.cpp

24

make_shared and make_unique
make_shared and make_unique wrap raw new, just as ~shared_ptr and
~unique_ptr wrap raw delete.
Never touch raw pointers with hands, and then never need to worry about
leaking them.
make_shared can be performance optimization.

25

Feedback

26

