
COMP6771
Advanced C++ Programming

Week 2.1
STL Containers

1

Libraries

Most of us are quite familiar with libraries in software. For example,
in COMP1511, we've used <stdio.h> and <stdlib.h>.

Being an effective programmer often consists of the effective use of
libraries. In some ways, this becomes more important than being a
genius at writing code from scratch (Don't reinvent the wheel!).

While there are many libraries that can be used with C++, the
Standard Template Library is the one we will focus on.

2

STL is an architecture and design philosophy for managing generic
and abstract collections of data with algorithms
All components of the STL are templates
Containers store data, but don't know about algorithms
Iterators are an API to access items within a container in a particular
order, agnostic of the container used

Each container has its own iterator types
Algorithms manipulate values referenced by iterators, but don't
know about containers

Container

Container
Algorithm

ContainerIteratorIterator

STL: Standard Template Library

Container

3

Iterating through a basic container
#include <array>
#include <iostream>

int main() {
 // C-style. Don't do this
 // int ages[3] = { 18, 19, 20 };
 // for (int i = 0; i < 3; ++i) {
 // std::cout << ages[i] << "\n";
 // }

 // C++ style. This can be used like any other C++ container.
 // It has iterators, safe accesses, and it doesn't act like a pointer.
 std::array<int, 3> ages{ 18, 19, 20 };

 for (unsigned int i = 0; i < ages.size(); ++i) {
 std::cout << ages[i] << "\n";
 }
 for (auto it = ages.begin(); it != ages.end(); ++it) {
 std::cout << *it << "\n";
 }
 for (const auto& age : ages) {
 std::cout << age << "\n";
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

demo201-vec-iter.cpp

4

Organises a finite set of objects into a strict linear arrangement.

std::vector

std::deque

std::list

std::forward_list

std::array

Dynamically-sized array.

Fixed-sized array.

Double-ended queue.

Singly-linked list.

Doubly-linked list.

We will explore these in greater detail in Week 10.

It won't be necessary to use anything other than std::vector in COMP6771.

Sequential Containers

5

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/array

Array-like container most used is <vector>
Abstract, dynamically resizable array
In later weeks we will learn about various ways to construct
a vector

Another look at Vector

#include <iostream>
#include <vector>

// Begin with numbers 1, 2, 3 in the list already
int main() {
 // In C++17 we can omit the int if the compiler can determine the type.
 std::vector<int> numbers {1, 2, 3};
 int input;
 while (std::cin >> input) {
 numbers.push_back(input);
 }
 std::cout << "1st element: " << numbers.at(0) << "\n"; // slower, safer
 std::cout << "2nd element: " << numbers[1] << "\n"; // faster, less safe
 std::cout << "Max size before realloc: " << numbers.capacity() << "\n";
 for (int n : numbers) {
 std::cout << n << "\n";
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

demo202-vec-obj.cpp
6

Provide fast retrieval of data based on keys. The keys are sorted. A value is accessed via a key.

std::set

std::map

std::multimap

std::multiset

A collection of unique keys.

A collection of keys.

Associative array that map a unique keys to values.

Associative array where one key may map to many values.

They are mostly interface-compatible with the unordered associative containers.

Ordered Associative Containers

7

https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/multimap
https://en.cppreference.com/w/cpp/container/multiset

std::map example
#include <iostream>
#include <map>
#include <string>

int main() {
 std::map<std::string, double> m;
 // The insert function takes in a key-value pair.
 std::pair<std::string, double> p1{"bat", 14.75};
 m.insert(p1);
 // The compiler will automatically construct values as
 // required when it knows the required type.
 m.insert({"cat", 10.157});
 // This is the preferred way of using a map
 m.emplace("cat", 10.157);

 // This is very dangerous, and one of the most common causes of mistakes in C++.
 std::cout << m["bat"] << '\n';

 auto it = m.find("bat"); // Iterator to bat if present, otherwise m.end()

 // This is a great example of when to use auto, but we want to show you what type it is.
 for (const std::pair<const std::string, double>& kv : m) {
 std::cout << kv.first << ' ' << kv.second << '\n';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

demo203-map.cpp

8

Provide fast retrieval of data based on keys. The keys are hashed.

std::unordered_set

std::unordered_map

A collection of unique keys.

Associative array that map unique keys to a values.

Unordered Associative Containers

9

https://en.cppreference.com/w/cpp/container/unordered_set
https://en.cppreference.com/w/cpp/container/unordered_map

Performance still matters
STL containers are abstractions of common
data structures
cppreference has a summary of them .
Different containers have different time
complexity of the same operation (see right)

here

O(1)+ means amortised constant time

Container Performance

10

https://en.cppreference.com/w/cpp/container

Feedback

11

