COMP6771
Advanced C++ Programming

Week 2.1
STL Containers

Libraries

Most of us are quite familiar with libraries in software. For example,
in COMP1511, we've used <stdio.h> and <stdlib.h>.

Being an effective programmer often consists of the effective use of
libraries. In some ways, this becomes more important than being a
genius at writing code from scratch (Don't reinvent the wheel!).

While there are many libraries that can be used with C++, the
Standard Template Library is the one we will focus on.

STL: Standard Template Library

e STL is an architecture and design philosophy for managing generic
and abstract collections of data with algorithms

e All components of the STL are templates

e Containers store data, but don't know about algorithms

e |terators are an API to access items within a container in a particular
order, agnostic of the container used

m Each container has its own iterator types

e Algorithms manipulate values referenced by iterators, but don't
know about containers

' /
Container teral‘or

Algorithm
Container

Iterating through a basic container

1 #include <array>

2 #include <iostream>
3

int main() {

4
5
6
7
8

9
10
11
12
13 std::array<int, 3> ages{ , , };
14
15 for (unsigned int i = 0; i < ages.size(); ++i) {
16 std::cout << ages[i] << "\n";
W, }
18 for (auto it = ages.begin(); it != ages.end(); ++it) {
19 std: :cout << *it << "\n";
20 }
21 for (const auto& age : ages) {
22 std::cout << age << "\n";
23 }
24 }

demo201-vec-iter.cpp

Sequential Containers

Organises a finite set of objects into a strict linear arrangement.

std: :vector Dynamically-sized array.
std: :array Fixed-sized array.

std: :deque Double-ended queue.
std::forward list Singly-linked list.
std::1list Doubly-linked list.

We will explore these in greater detail in Week 10.

It won't be necessary to use anything other than std::.vector in COMP6771.

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/array

Another look at Vector

e Array-like container most used is <vector>

= Abstract, dynamically resizable array
= |n [ater weeks we will learn about various ways to construct
a vector

1 #include <iostream>
2 #include <vector>

3

4

5 int main() {

6

7 std: :vector<int> numbers {1, 2, 3};

8 int input;

9 while (std::cin >> input) {

10 numbers.push back(input);

11 }

12 std::cout << "lst element: " << numbers.at(0) << "\n";
13 std::cout << "2nd element: " << numbers[l] << "\n";

14 std::cout << "Max size before realloc: " << numbers.capacity() << "\n";
15 for (int n : numbers) {

16 std::cout << n << "\n";

17 }

18 }

demo202-vec-obj.cpp

Ordered Associative Containers

Provide fast retrieval of data based on keys. The keys are sorted. A value is accessed via a key.

std: :set A collection of unique keys.

std: :multiset A collection of keys.

std: :map Associative array that map a unique keys to values.

std: :multimap Associative array where one key may map to many values.

They are mostly interface-compatible with the unordered associative containers.

https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/multimap
https://en.cppreference.com/w/cpp/container/multiset

std::map example

1 #include <iostream>
2 #include <map>
3 #include <string>
4
5 int main() {
6 std: :map<std::string, double> m;
7
8 std: :pair<std::string, double> pl{"bat", };
9 m.insert(pl);
10
11
12 m.insert({"cat", });
13
14 m.emplace("cat"”,) ;
15
16
17 std::cout << m["bat"] << '\n';
18
19 auto it = m.find("bat");
20
21
22 for (const std::pair<const std::string, double>& kv : m) {
A std::cout << kv.first << ' ' << kv.second << '\n’';
24 }
25 }

demo203-map.cpp

Unordered Associative Containers

Provide fast retrieval of data based on keys. The keys are hashed.

std: :unordered_set A collection of unique keys.

std: :unordered map Associative array that map unique keys to a values.

https://en.cppreference.com/w/cpp/container/unordered_set
https://en.cppreference.com/w/cpp/container/unordered_map

Container Performance

Performance still matters

STL containers are abstractions of common
data structures

cppreference has a summary of them here.
Different containers have different time
complexity of the same operation (see right)

Operation vector | list | queue

container() O(1)
container(size) O(1)
operatorl(|() O(1)
operator—(container) || O(N)
at(int) O(1)
size() O(1)
resize() O(N)
capacity() O(1)
erase(iterator) O(N)
front() O(1)
insert(iterator, value) O(N)
pop-back() O(1)
pop_front()

push_back(value) O(1)+
push_front(value)

begin() O(1)
end() O(1)

O(1)+ means amortised constant time

10

https://en.cppreference.com/w/cpp/container

