
C++20 and real world C++
COMP6771 Guest Lecture

Videesha Saparamadu 02/08/2022

Who am I?
Videesha Saparamadu

- Senior Software Developer and Technology

Educator at Optiver

- BSc CompSci (UNSW)

- Worked in airline software and security

engineering before joining Optiver 7 years ago

Why am I here today?

• Optiver is proud to sponsor Advanced C++ Programming at the University of New South Wales.

• At Optiver developers design, build and maintain a world-class automated trading platform, mostly in C++.

• This means:

- Designing, developing, testing and deploying their own systems.

- Choosing appropriate algorithms and data-structures.

- Optimising their systems for low-latency.

- Employing up-to-date, industry-best practice.

• This course supports these skills and provides a great foundation for working with Optiver

• Optiver donates $500 in prizes for the best performance in COMP 6771.

Agenda

• C++20 Features

- Modules

- Coroutines

- Concepts

- Ranges

• How we use C++ day to day at Optiver

Modules

• Standardised mechanism for code reuse

• Organise C++ code into logical components

• A module explicitly exports the classes and

functions that code outside of the module are

allowed to access.

• Other code remains private

• This behaviour will be extended to all c++ library

header files (pending compiler support)

5

// helloworld.cppm
export module helloworld; // module declaration
import <iostream>; // import declaration

export void hello() { // export declaration
std::cout << "Hello world!\n";

}

void goodbye() {
std::cout << "Goodbye world!\n";

}

//main.cpp
import helloworld; // import declaration

int main() {
hello();
goodbye(); //error not exported

}

Modules

Benefits

• Reduces dependency on the pre-processor and header

files

• #include file order no longer matters, less error prone,

no cyclic dependencies

• Avoids issues with macro leaking

• Faster build times, modules are pre-compiled only once

6

// helloworld.cppm
export module helloworld; // module declaration
import <iostream>; // import declaration

export void hello() { // export declaration
std::cout << "Hello world!\n";

}

void goodbye() {
std::cout << "Goodbye world!\n";

}

//main.cpp
import helloworld; // import declaration

int main() {
hello();
goodbye(); //error not exported

}

Coroutines

• A coroutine is a function that can suspend

execution to be resumed later

• Control is returned to the caller

• The current state of the coroutine is saved to be

resumed where it left off

• Keywords co_yield, co_await, co_return

7

generator<int> getNextNumber()
{

int n = 0;
while (true)
{

co_yield n++;
}

}

void printNumbers()
{

std::cout << getNextNumber() << std::endl;
std::cout << getNextNumber() << std::endl;

}

Coroutines

Benefits

• Stackless - Coroutine invocations do not have

independent stacks, they allocate data for the

coroutine on the heap – efficient memory usage an

context switching

• Allow for sequential code that executes

asynchronously

• No callbacks, can yield control and resume when

necessary

However

• C++ 20 only provides a very low-level api, the

generator class used here doesn't yet exist

• Rules of interaction between the caller and the

callee are complex

• Can use some third party libraries for example

cppcoro 8

generator<int> getNextNumber()
{

int n = 0;
while (true)
{

co_yield n++;
}

}

void printNumbers()
{

std::cout << getNextNumber() << std::endl;
std::cout << getNextNumber() << std::endl;

}

Concepts

• Concepts allow us to specify what is needed from

a template argument so this can be checked by

the compiler

• Constraints model semantic requirements

• In this example the parameter T is unconstrained,

but it won't compile for any type that doesn't have

a + operator

• These error messages can be very complex

9

template <typename T>
auto add(T const a, T const b)
{

return a + b;
}

int main()
{

std::cout << add(1, 3) << std::endl;
}

Concepts

• Add a requires clause

10

template <typename T>
requires std::integral<T>
auto add(T const a, T const b)
{

return a + b;
}

int main()
{

std::cout << add(1, 3) << std::endl;

}

Concepts

• Creating our own concept

11

template <typename T>
concept Number = std::integral<T> || std::floating_point<T>;

template <typename T, typename U>
requires Number<T> && Number<U>
auto add(T const a, U const b)
{

return a + b;
}

int main()
{

std::cout << add(1, 3.1) << std::endl;
}

Concepts

Benefits

• Generates meaningful error messages that are

much easier to understand

• Clearly documents expectations

• Much easier to use than previous enable_if syntax

12

Ranges

• Ranges are an abstraction of a "collection of

items" or "something iterable"

• Containers are ranges, they own their elements

• Views are ranges that that are usually defined on

another range

• Views do not own any data beyond their algorithm

• Less error prone than using iterators

13

std::vector v;
std::sort(v.begin(), v.end());
std::ranges::sort(v);

Ranges

• Allow us to lazily filter and transform data through

a pipeline

• Views are applied when an element is requested,

not when the view is created

14

#include <iostream>
#include <ranges>
#include <vector>

int main() {
std::vector<int> numbers = { 1, 2, 3, 4, 5, 6 };

auto is_even = [](int n) { return n % 2 == 0; };

auto results = numbers | std::views::filter(is_even)
| std::views::transform([](int n) { return n++; })
| std::views::reverse;

for (auto v: results) {
std::cout << v << " "; // Output: 7 3 5

}
}

C++20

- Modules

- Coroutines

- Concepts

- Ranges

- Further info see

- Timur Doumler – How C++20 changes the way we write code

Summary

15

How do we use C++ at Optiver?

• Information flows to us from an exchange.

• Our auto-traders estimate prices and determine if

we wish to execute any order operations – that is:

place, amend and/or delete orders.

• If so, those order operations are sent to the

exchange.

• Rinse and repeat!

16

Exchange

Information

Auto-trader

Execution

How do we use C++ at Optiver
Object Oriented Design

• Critically important and included in our interview

processs

17

How do we use C++ at Optiver
C++ Features heavily used

• STL containers and algorithms

• std::vector, std::find

• critical to understand the performance

implications of your data structure choices

• Smart pointers

• safety features of std::unique_ptr

• Auto

• Lambda functions

• std::string_view

18

How do we use C++ at Optiver
C++ Features not used

• Multithreading

19

How do we use C++ at Optiver
Internal libraries

• Event processing

• More performant data structures

20

Opportunities at Optiver

21

Opportunities at Optiver

GRADUATES

• For final year students or recent graduates (< 4 years experience)

• $250K first year package + perks (2023 start)

• Roles: Trader | Researcher | Software Developer | FPGA Developer

INTERNS

• Pre-penultimate or penultimate year students

• $175K p.a. + super (pro-rated) + perks

• Roles: Trader | Researcher| Software Developer | FPGA Developer

ELIGIBILITY

• AU/NZ citizen, AU permanent resident or able to secure full working rights under the temporary graduate

(subclass 485) or skilled-independent visa (subclass 189)

• Applications will open in mid-Feburary

22

23

Trading / Quant roles at Optiver

• Undertake trading

through our auto traders

• Identify profitable

opportunities in the

market
• Identify trends in market

data

• Identify trends in market

data

• Identify solutions to

increase our trading

execution success

• Manage market, credit

and technology related

risks

• Providing risk opinions

and views to Trading and
Management

TRADING RESEARCH RISK MANAGER

24

Trading / Quant – What we look for

• Quantitative skillset

• Lateral thinker

• Have a drive for success

• Interest in trading /

financial markets
• Coding experience a +

• Working with a diverse

team

• Self-motivated

• Can communicate ideas

& problems
• Coding experience a +

• Interest in financial

markets

• An adept communicator

(in person & writing)

• VBA, Python, Matlab or
other

TRADING RESEARCH RISK MANAGER

25

Technology roles at Optiver

• Design & develop our

trading systems

• Maximise speed,

reliability & scalability

• C++, C# & some Python

• Accelerate our networks

& trading systems

• Explore mechanisms for

faster communications

• Work with the fastest
devices & platforms

SOFTWARE DEVELOPER FPGA DEVELOPER

26

Technology – What we look for

• Low latency, high

performance systems

• Personal projects

• Collaboration

• C++, C# or Java

• Hardware passion

• Network protocols /

digital design concepts

• Personal projects

• Collaboration
• VHDL and/or Verilog

SOFTWARE DEVELOPER FPGA DEVELOPER

27

GRADUATE PROGRAM

Foundations
TECHNOLOGY

TRADING

Autotrading

Project

Base Trading Market Making

9 Months

2 Weeks 8 Weeks2 Weeks

First Rotation

Enter teams

3 Weeks2 Weeks

3 Months

Questions?

28

