COMP677]

Advanced C++ Programming
Week 9

Runtime Polymorphism

Dynamic polymorphism or Late binding

Key concepts

e Inheritance

= To be able to create new classes by inheriting from existing classes.
= To understand how inheritance promotes software reusability.

m To understand the notions of base classes and derived classes.
e Polymorphism

= Static: determine which method to call at compile time
= Dynamic polymorphism: determine which method to call at run time

o function call is resolved at run time
o Closely related to polymorphism
o Supported via virtual functions

Tenets of C++

e Don't pay for what you don't use
= C++ Supports OOP
o No runtime performance penalty

= C++ supports generic programming with the STL and templates
o No runtime performance penalty

= Polymorphism is extremely powerful, and we need it in C++
© Do we need polymorphism at all when using inheritance?

© Answer: sometimes
o But how do we do so, considering that we don't want to make
anyone who doesn't use it pay a performance penalty

Thinlking aboud .

e Represent concepts with classes
e Represent relations with inheritance or composition

= Inheritance: A is also a B, and can do everything B does

o "is a" relationship
o A dogis an animal

= Composition (data member): A contains a B, but isn't a B itself

o "has a" relationship
o A person has a name

= Choose the right one!

Inheritance

* Represent concepts with classes
e Represent relations with inheritance or composition

= |Inheritance: A is also a B, and can do everything B does

o "is a" relationship
o A dogis an animal

= Composition (data member): A contains a B, but isn't a B itself

o "has a" relationship
o A person has a name

= Choose the right one!

Inheritance is relation between two or more classes £ Vehicles 2,
where child/derived class inherits properties from

P Automobiles _~O Pulled)
existing base/parent class. S {pi=

(motor driven) Vehicles

£ £ A
Car §up | : Rickshaw M

Why:
code reusability & data protection

Examples

-Often an object from a derived class (subclass) “is an” object of a base class (superclass)

Base class Derived classes
Student GraduateStudent
UndergraduateStudent
Shape Circle
Triangle
Rectangle
Loan CarLoan
HomeImprovementLoan
MortgagelLoan
Employee FacultyMember
StaffMember
Account CheckingAccount
SsavingsAccount

TwoDimensionalShape ThreeDimensionalShape

- f - e T -

Circle Square Triangle Sphere Cube Tetrahedron

CommunityMember

Employee Student Alumnus (single inheritance)
Inheritance in C++

Administrator Teacher (single inheritance)
~ -

° Single VS MU|tip|e Adm‘in"ist:;t:rf'Teacher'(multip]e inheritance)
® To inherit off classes in C++, we use "class DerivedClass: public BaseClass"
® Visibility can be one of:

= public
o object of derived class can be treated as object of base class (not vice-versa)
o (generally use this unless you have good reason not to) low inherited base class
I . 5,0 Base class members members
S If you don't want public, you should (usually) use composition |——" private

= protected
© allow derived to know details of parent

private: x x is inaccessible
protected: y base class protected: y
B private oublic: z protected: z
O [] .bl

nOt INaCCessI| € private: x public x IS inaccessible
protected: y base class protected: y

icihihi 1 I icithili public: z oublic: z

¢ Visibility is the maximum visibility allowed ublic: - —

" |f you specify ": private BaseClass", then the maximum visibility is private

o Any BaseClass members that were public or protected are now private

class Grade

private members:
char letter;
float score;
volid calcGrade() ;
public members:
volid setScore(float);
float getScore();
char getLetter();

When Test class inherits
from Grade class using
public class access, it

looks like this:

class Grade

private members:
char letter;
float score;
vold calcGrade () ;
public members:
vold setScore(float);
float getScore();

char getLetter();

When Test class inherits
from Grade class using
private class access, it

looks like this:

Inheritance vs Access

class Test : public Grade

private members:
int numQuestions;
float pointsEach;
int numMissed;
public members:
Test (int, int);

class Grade

private members:
int numQuestions:
float pointsEach;
int numMissed;

public members:
Test (int, int);
void setScore(float) ;
float getScore();
char getLetter();

private members:
char letter;
float score;
vold calcGrade () ;
public members:
vold setScore(float);
float getScore() ;

class Test : protected Grade

char getLetter();

class Test : private Grade

private members:
int numQuestions;
float pointsEach;
int numMissed;
public members:
Test (int, 1int);

When Test class inherits
from Grade class using

protected class access, it

private members:
int numQuestions;
float pointsEach;
int numMissed;
public members:
Test (1nt, int);

looks like this:

private members:
int numQuestions:
float pointsEach;
1int numMissed;

float getScore();

public members:
Test (int, 1int);

vold setScore(float);

float getLetter();

private members:
int numQuestions:
float pointsEach;
int numMissed;
public members:
Test (int, int);
protected members:
void setScore (float);
float getScore();
float getLetter();

Syntax and memory layout

This is very important, as it guides the design of everything we discuss this week

BaseClass object SubClass object

iInt_member_ S bob iInt_member_
string_member_ asellass subobject string_member_

vector_ member_

SubClass subobject
ptr_member_

1 class BaseClass { 1 class SubClass: public BaseClass {
2 public: 2 public:

3 int get int member() { return int member ; } 3 std::string get class name() {

4 std::string get class name() { 4 return "SubClass';

5 return "BaseClass"” 5 }

6 }; 6

7 7 private:

8 private: 8 std: :vector<int> vector member ;
9 int int member ; 9 std::unique ptr<int> ptr member ;
10 std::string string member ; 10 }
11 }

Constructors and Destructors

Single

Derived classes can have their own constructors and destructors
*When an object of a derived class is created, the base class’s constructor is executed first, followed by the derived class's constructor
*When an object of a derived class is destroyed, its destructor is called first, then that of the base class

1 #include <iostream>
2
when obiject o when objecto when object o when object of
3 class base { mn J_t_'”_‘:'_“ o child creates child creates ! ,J o]
4 bl class creates child creates
public:
5 base() { std::cout << "Constructing base\n"; } — ; et] 4
- constuctor
6 ~base() { std::cout << "Destructing base\n"; } construcior | | 1 [conwiructor | | 4 constructor | |1 i
7} Destrucior | | 2 Desivacior | |4 | Destructor_| | 5 | Destructor | |6
8
. . 7 SSLS G Grand Father Class
9 class derived: public base { simple_class parent _class parent class_ parent_class_2 - p—
10 public:
. . . Figure:
11 derived() { std::cout << "Constructing derived\n"; } [SEt——.
- : - - : b [onsmes 1 | 2 [constructor | | 2
12 ~derived() { std::cout << "Destructing derived\n"; } constructor | |3
EY [Dosucior
o H s [Dosrucor |4 pesase 11
' ' child _class Father_Class
15 1int main() c child _class
16 { Figure:
. Single inheritence Figure:
17 derived ob; RIMUPCERISIGeNES constructor | |
18 Esmammt | |9
L9 | Destructor | |4
20
21 return ; child _class
292 How and in which sequence constructor and destructor invoked in C++ Figure:
} Multi Level inheritence

10

0O J O O s LW DN -

NN NMNNMNNMNMNNMNNNRRRREFRRRBRRR
N OO WN R OWVWOONOUE WNEFE OV

28
29

Constructors and Destructors

#include <iostream>

class base {

public:
base() { std::cout << "Constructing base\n"
~base() { std::cout << "Destructing base\n"

e e
— -

class derivedl : public base {

public:
derivedl() { std::cout << "Constructing derivedl\n"
~derivedl () { std::cout << "Destructing derivedl\n"

}:

class derived2: public derivedl {

public:
derived2() { std::cout << "Constructing derived2\n"
~derived2() { std::cout << "Destructing derived2\n"

}i
int main()

{

derived2 ob;

return 0;

Multilevel

when object of

class creates

child creates

constructor | | 1 ekl W
Destructor | |6 | |Destructor | |5

4
parent _class parent _clags_1

Figure:

Simple Clas
ERE SIS constructor | | 2
Destructor I 3

child _class

Figure:
Single inheritence

How and in which sequence constructor and desftructor invoked in C++

comstructor | | 3
[Destructor | |4

child _class

Figure:
Multiple inheritence

when object of
child creates

Gonstractor | 1
[Destructor_| |6

Grand_Father_Class

constuctor [] 2
| Destructor | | 5

Father Class

constueer | 3
| Destructor | |4

child _class

Figure:
Multi Level inheritence

11

Constructors and Destructors
, oing namospece”sea Multiple

4 class basel
public:
basel() { std::cout << "Constructing basel\n"; }
~basel() { std::cout << "Destructing basel\n"; }

i ilian aliiasis o when object o whe JJect Ol whe ject of
} . rlc‘::sijcbrt:i:t;;d child creates ates C;:ldncﬁsfaieso
10 class base2 { Constructor |] 1 [constructor| [conatruchor T | 1
11 public:
P . . . Destructor_| | 2 [Destructor_|] 4 [estrmmior 1]¢
12 base2() { std::cout << "Constructing base2\n"; } .
13 ~base?2 () { std: :cout << " Destructing base?2 \n ! 7 } simple_class parent _class parent _class_1 parent _class_2 srand_raiher_LIass
14 } ; Figure:
= Simple Class l 2
. class derived: public basel, public base2 { | Destructor | | 3 Destmactor |] [Destructor | | 6

/ publlC: Saed Father_Class
1 Q - " . C " child _class I ather_Cla
18 derived() { std::cout << "Constructing derived\n"; } Figure:
- - . . . S 4;4 i h :"te 15 i re:
19 ~derived() { std::cout << "Destructing derived\n"; } g L
20 3 consructor | |3
2C ;
21 [Destrucior |]4

int main () child _class

N How and in which sequence constructor and destructor invoked in C++ Figure:
L O { Multi Level inheritence
24 derived ob;

: Problem: what if base classes have member variables/functions with the same name?
27 Solutions:

return H derived class constructor base class constructor

-Derived class redefines the multiply-defined function

ructor N ™ -Derived class invokes member function in a particular base class using scope
Square: :Square (1nt side) :Rectangle (side, si1de) resolution operator ::

W

derived constructor base constructor
O d efa U |t parameter parameters

12

Redefining Base Function

1. Redefining function: function in a derived class that has the same name and parameter list as a function in the base class.
2. Typically used to replace a function in base class with different actions in derived class.
3. Not the same as overloading - with overloading, parameter lists must be different.

4. Objects of base class use base class version of function; objects of derived class use derived class version of function.

1 1 1 int main()
2 class GradeActivity({ 2 #ifndef CURVEACTIVITY H 2
3 protected: 3 #define CURVEACTIVITY H 3 double numscore, per;
4 char letter; 4 4 CurvedActivity exam;
5 double score; 5 class CurveActivity : public GradeActivity({ 5 std::cout<<"Enter raw score";
6 void determineGrade(); 6 protected: 6 std::cin>>numscore;
7 public: 7 char rawScore; 7 std::cout<<"%age";
8 GradeActivity() 8 double percenrage; 8 std::cin>>per;
) {letter=' '; score= HE) void determineGrade(); 9 exam.setPercentage(per);
L 0 void setScore(double s){ 10 public: 10 exam.setScore(numscore);
[1 score=s; 11 CurveActivity() :GradeActivity() 11
| 2 determineGrade();} 12 {rawScore= ; percentage= ;) 12 std::cout<<exam.getRawScore();
1 3 double getScore() const 13 void setScore(double s){ 13 std::cout<<exam.getScore();
1 4 {return score;} 14 rawScore=s; 14 std::cout<<exam.getLetterGrade() ;
L5 char getLetterGrade() const 15 GradeActivity::setScore(rawScore*percentage);} 15
L 6 {return letter;} 16 void setPercentage(double c) const 16 }
17 3} 17 {percentage=c; }
18
19 double getPercentage() const
20 {return percentage;}
21 double getRawScore() const
22 {return rawScore;}

23 }

13

Problem: Redefining Base Function

BaseClass DerivedClass : public BaseClass

. . . Object D invokes function X() in BaseClass.
Vel E U3 RN Ee Function X() invokes function Y() in BaseClass,
not function Y() in DerivedClass, because
function calls are bound at compile time. This
is static binding,

DerivedClass D;
D.X();

14

Problem: Redefining Base Function

1 #include <iostream> ; int main() {
§ class Shape { 3 Shape *shape;
4 protecteds 4 Re§tangle re§(' 1)
5 int width, height; 5 Triangle tri(l0,5);
6 public: 6
7 Shape(int a = 0, int b = 0){ 7 shape = &rec;
8 width = a; 8
9 height = b; 9 shape->area();
10 } 10
11 int area() { 11 shape = &tri;
12 std::cout << "Parent class area :" <<endl;)
13 return 0; 13 shape->area();
14 ¥ 14 return 0O;
L 15 }
16 class Rectangle: public Shape {
17 public:
19 int area () {
20 std::cout << "Rectangle class area :" <<endl; Parent class area :
21 return (width * height);
22 } 1
23 }; 2 int main() {
24 class Triangle: public Shape { 3
25 public: 4 Rectangle rec(10,7);
26 Triangle(int a = 0, int b = 0):Shape(a, b) { } 5 Triangle tri(10,5);
27 6
28 int area () { 7 rec.area();
A cout << "Triangle class area :" <<endl; 8
30 return (width * height / 2); 9 tri.area();
oL } 10 return 0O;
32 b 11

33

O 00 J O Ul & W N -

Example from Past

int main() {
int num desserts = 24 + 35;
cout << num desserts << endl;
string strl = "We can combine strings ";
string str2 = "that talk about delicious desserts”;
string str = strl + str2;
cout << str << endl;
return 0;

-

16

O O 0O JOo6 O WD -

=

Polymorphism and values

Polymorphism means that a call to a member function will cause a different
function to be executed depending on the type of object that invokes the
function.

Polymorphism allows reuse of code by allowing objects of related types to be
treated the same.

How many bytes is a BaseClass instance?
How many bytes is a DerivedClass instance?
One of the guiding principles of C++ is "You don't pay for what you don't use"

= | et's discuss the following code, but pay great consideration to the memory

layout
1 void print class name(BaseClass base) ({
: 2 std: :cout << base.get class name()
class BaseClass { 1 class.SubClass. public BaseClass { 3 a2 | | =2 barE.cee meisen |
blic: 2 public: o, —
public: _ 4 << '\n';
int get member() { return member ; } 3 std::strl?g get_cl?ss_name() { 5 3
std::string get class name() { 4 return “SubClass’; 6
return "BaseClass"; > } 7 int main() {
}i S NP 8 BaseClass base class;
. pint suéclass data 9 SubClass subclass;
private: 9 3 — —! 10 print class name(base class);
int member_; 11 print class name(subclass);
} demo901-poly.cpp 12 }

17

The object slicing problem

e |f you declare a BaseClass variable, how big is it?

e How can the compiler allocate space for it on the stack, when it doesn't know how

pig it could be?

e The solution: since we care about performance, a BaseClass can only store a
BaseClass, not a SubClass

= |f we try to fill that value with a SubClass, then it just fills it with the BaseClass
subobject, and drops the SubClass subobject

1 class BaseClass { 1 class SubClass: public BaseClass { 1 void print class name(BaseClass base) {

2 public: 2 public: 2 std::cout << base.get class name()

3 int get member() { return member ; } 3 std::string get class name() { 3 << ' ' << base.get member()

4 std::string get class name() { 4 return "SubClass”; 4 << '\n';

5 return "BaseClass"; 5 } 5 }

6 }s 6 6

7 7 private: 7 int main() {

8 private: 8 int subclass data ; 8 BaseClass base class;

9 int member ; 9 } 9 SubClass subclass;

10 } 10 print class name(base class);
11 print class name(subclass);
12 }

demo901-poly.cpp

18

Polymorphism and References

e How big is a reference/pointer to a BaseClass

e How big is a reference/pointer to a SubClass

* Object slicing problem solved (but still another problem)

e One of the guiding principles of C++ is "You don't pay for what you don't use"

= How does the compiler decide which version of GetClassName to call?
o When does the compiler decide this? Compile or runtime?
= How can it ensure that calling GetMember doesn't have similar overhead

1 class BaseClass { 1 class SubClass: public BaseClass { 1 void print class name(BaseClass& base) ({

2 public: 2 public: 2 std::cout << base.get class name()

3 int get member() { return member ; } 3 std::string get class name() { 3 << ' ' << base.get member()

4 std::string get class name() { 4 return "SubClass”; 4 << '\n';

5 return "BaseClass"; 5 } 5 }

6 }s 6 6

7 7 private: 7 int main() {

8 private: 8 int subclass data ; 8 BaseClass base class;

9 int member ; 9 } 9 SubClass subclass;

10 } 10 print class name(base class);
11 print class name(subclass);
12 }

demo902-poly.cpp

19

Virtual functions

» How does the compiler decide which version of GetClassName to call?
» How can it ensure that calling GetMember doesn't have similar overhead

m Explicitly tell compiler that GetClassName is a function designed to be modified by subclasses
= Use the keyword "virtual" in the base class:

o function in base class that expects to be redefined in derived class

o supports dynamic binding: functions bound at run time to function that they call.

o At runtime, C++ determines the type of object making the call, and binds the function to
the appropriate version of the function.

o |t ensures that the correct function is called for an object, regardless of the type of
reference (or pointer) used for function call.

o Without virtual member functions, C++ uses static (compile time) binding.

o Use the keyword "override" in the subclass

1 void print stuff(const BaseClass& base) ({
2 std: :cout << base.get class name()

1 class BaseClass { 3 << ' ' << base.get member ()

2 public: 1 class SubClass: public BaseClass { 4 << '\n';

3 int get member() { return member ; } 2 public: 5 }

4 virtual std::string get_class_name() { 3 std::string GetClassName() override ({ 6

5 return "BaseClass"” 4 return "SubClass": 7 int main() {

6 i 5 } 8 BaseClass base class;

7 6 9 SubClass subclass;

8 private: 7 private: 10 print class name(base class);

9 int member_; 8 int subclass data_ ; 11 print class name(subclass);

L0} 9 1} demo903-virt.cpp 12 } "

Override

e While override isn't required by the compiler, you should always use it
e QOverride fails to compile if the function doesn't exist in the base class. This helps
with:
= Typos
= Refactoring

® Const/ non-const methods
= Slightly different signatures

1 class SubClass: public BaseClass {
2 public:

1 class BaseClass { 3

2 public: 4

3 int get member() { return member ; } 5

4 virtual std::string get class name() { 6 std::string get class name() const {

5 return "BaseClass” 7 return "SubClass’;

6 }i 8 }

7 9

8 private: 10 private:

9 int member ; 11 int subclass data ;

10 } 12 }

0O Jo Ul WD K-

11
12
13
14
15
16
17
18
19
20
21

Virtual functions

So what happens when we start using virtual members?

class BaseClass {
public:
virtual std::string get class name() {

}

}.

return "BaseClass';

14

~BaseClass () {

}

std::cout << "Destructing base class\n";

class SubClass: public BaseClass {
public:
std::string get class name() override {

}

}

return "SubClass";

~SubClass() {

}

std: :cout << "Destructing subclass\n";

void print stuff(const BaseClass& base class) {
std: :cout << base class.get class name()
<< ' ' << base class.get member()
<< '\n';

}

int main() {
auto subclass = static cast<std::unique ptr<BaseClass>>(
std: :make unique<SubClass>());
std: :cout << subclass->get class name();

R O O 00 Jo O WDN K-

=

}

demo904-virt.cpp

22

Rules for Virtual Function

1. Virtual functions cannot be static. L Tincludesiostrean
class base {
. . . . 3 blic:
2. A virtual function can be a friend function of 2 T el weke)
5 std::cout << "print base class\n";
another class. 6 y
7
3. 8 void show() {
9 std::cout << "show base class\n";
10 }
11 };
12 class derived : public base {
13 public:
14 void print() {
15 std::cout << "print derived class\n";
16 }
[]) 17
4. The prototype of virtual functions should be the 18 void show() {
. . 19 std::cout << "show derived class\n";
same in the base as well as derived class. 20 }
21 };
5.They are always defined in the base class and 82 .
L in maln
overridden in a derived class. It is nhot mandatory 24 {
. . . 25 base *bptr;
for the derived class to override (or re-define the 26 derived d;
. . . 27 bptr = &d;
virtual function), in that case, the base class 28
. . . 29 bptr->print();
version of the function is used. 30
. . 31 bptr->show();
6. A class may have virtual destructor but it cannot = Ease-bii)
. .prln H
have a virtual constructor. 34 base b2=derived();
35 b2.print();

w
(@)
-

23

https://www.geeksforgeeks.org/virtual-destructor/

O Jo O s WDN K

W WwWwwwwwbNhDdDdDDdDdDDMDDNDDDMNDNMDDMDDNDDNNERPEPRPRPRPRPRPRRRERBR
O WDNDDEPE OWVWOoDJO ULl WDNEFEPE O WVWOLOUNO Ul bWDNEFE OV

#include <iostream>
class Shape {
protected:
int width, height;
public:
Shape(int a = 0, int b = 0) {
width = a;
height = b;
}
virtual int area() {
cout << "Parent class area :" <<endl;
return 0O;
}
}i
class Rectangle: public Shape {
public:
Rectangle(int a = 0, int b = 0):Shape(a, b) { }
int area () {
std::cout << "Rectangle class area :" <<endl;
return (width * height);
}
}i
class Triangle: public Shape {
public:
Triangle(int a = 0, int b = 0):Shape(a, b) { }
int area () {
cout << "Triangle class area :" <<endl;
return (width * height / 2);
}
}i

0O O O s WDN B

(I S = S =
S W~ oW

15 }

int main() {

Shape *shape;
Rectangle rec(
Triangle tri(
shape = &rec;
shape->area();

shape = &tri;

shape->area();
return 0;

Rectangle class area

Triangle class area

'

we e

24

VTables

e Each class has a VTable stored in the data segment
= A vtable is an array of function pointers that says which definition each virtual function points to for that
class

e If the VTable for a class is non-empty, then every member of that class has an additional data member that

IS a pointer to the vtable
e When a virtual function is called on a reference or pointer type, then the program actually does the

following
1. Follow the vtable pointer to get to the vtable

2. Increment by an offset, which is a constant for each function
3. Follow the function pointer at vtable[offset] and call the function

class Polygon
vtable - > Polygon: :sides() —
height Polygon: :area()

width

vtable | = Triangle::sides()
height Triangle::area()

width

class Rectangle: public Palygon

vtable - Rectangle::sides() |

height Rectangle: :area()

Another example here width

https://pabloariasal.github.io/2017/06/10/understanding-virtual-tables/

© O 0O Jo Ul & WD K

Final

e Specifies to the compiler "this is not virtual for any subclasses"

e |f the compiler has a variable of type SubClass&, it now no longer
needs to look it up in the vtable

e This means static binding if you have a SubClass&, but dynamic
binding for BaseClass&

class BaseClass { 1 class SubClass: public BaseClass {
public: 2 public:
int get member() { return member ; } 3 std::string get class name() override final {
virtual std::string get class name() { 4 return "SubClass";
return "BaseClass" 5 }
}i 6
7 private:
private: 8 int subclass data ;
int member ; 9 }

-

26

Types of functions

Syntax Name Meaning
virtual void fn() = 0; pure Inherit interface only
virtual
virtual void fn() {} virtual Inherit interface with optional implementation
void fn() {} nonvirtual|Inherit interface and mandatory implementation

27

Why We Need Poly

1 class Shape{ c .

N 1 e To add new shapes later. simply need to define
voi raw cout<< ape"<<endl;}; 2 public: . . .

ok 3 virtual void draw(){ cout<<"Shape’<<endl;}; the new type, and the virtual function. we simply

: : 4 }; . o .

o giass frainglie: public Shape 5 need to add pointers to it into the array and

7 A . . .) 6 class Traingle: public Shape

8 public: void draw(){cout<<'Triangle’<<endl;} 7 1 they will be processed just like objects of every

9 }i 8 public: void draw(){cout<<"Triangle"<<endl;}

[
o
O

b other compatible type.

11 class Rectangle: public Shape 10

12 { 11 class Rectangle: public Shape

13 public: void draw (){cout<<"Rectangle'"<<endl;} 12 ¢

12 }i 13 public: void draw (){cout<<"Rectangle"<<endl;}
16 void pre drawl(Shapel&); 12 i

17 void pre_draw2(Shape2&); 16 void pre draw(Shape*);

— =
O
l_l
~

void pre drawN(ShapeN&);

[
(0]

int main(){
std: :vector<Shape*> v = get shape vector();

N

=)
'_l
O

21 int main(){ 20 for(Shape* s : V)
22 std::vector<Shapel> vl = get shapel vector(); 21 s->draw();
23 std::vector<Shape2> v2 = get shape2 vector(); 29)

NN
(62 =1
N
w

std: :vector<ShapeN> vN get shapeN vector();

N
IS

for(Shape* s : v) {
pre draw(s);

\S)

(o)}
\)
(6)]

27 for(Shapel& s : vl) 26 s->draw();

28 s.draw(); 27 }

29 for(Shape2& s : v2)

30 s.draw();

31

32 for(ShapeN& s : VN)

33 s.draw();

34 5 c

35 for(Shapel& s : vl) { ; int giggééie el -

36 pre drawl(s); 3 EObS>draw()

i;) SoGRERT() 4 Rec?angle rObj;

39 for(Shape2& s : vl) { 2 ! robj->draw();

40 pre draw2(s);

41 s.draw();

42 } . . .

427/ .. D Besides defining the new type, we have to create a
or (ShapeN& s : vl) .

T e gy new array for it. And need to create a new pre_draw

7 function as well as need to add a new loop to

process them.,

Abstract Base Classes (ABCs)

* Might want to deal with a base class, but the base class by itself is nonsense

= \WWhat is the default way to draw a shape? How many sides by default?
= A function takes in a "Clickable"

e Might want some default behaviour anc

m All files have a name, but are reads @

e |f a class has at least one "abstract" (

abstract and cannot be constructed

® |t can,
m These

subobj

ect of any derived classes

data, but need others
one over the network or from a disk

oure virtual in C++) method, the class is

nowever, have constructors and destructors
orovide semantics for constructing and destructing the ABC

29

=

O O 00 Jo Ol WD -

Pure virtual functions

e Virtual functions are good for when you have a default
implementation that subclasses may want to overwrite

e Sometimes there is no default available

e A pure virtual function specifies a function that a class
must override in order to not be abstract

class Shape {

virtual void draw(Canvasé&) {}
virtual void draw(Canvasé&);

virtual void draw(Canvas&) = 0;

}i

30

~N o O > WD B

Creating polymorphic objects

* In alanguage like Java, everything is a pointer

m This allows for code like on t
= Not possible in C++ dueto o

o This then leads to slicing

e |f you want to store a polymorp
1
2
3
auto base = std::vector<BaseClass>(); 4
base.push back(BaseClass{}); 5 auto
base.push back(SubClassl{}); 6
base.push back(SubClass2{}); 7
8

ne left
njects being stored inline

orob

NIC O

base =

em

Dject, use a pointer

std: :vector<std::unique ptr<BaseClass>>();

base.push back(std::make unique<BaseClass>());
base.push back(std::make unique<Subclassl>());
base.push back(std::make unique<Subclass2>());

31

0O O O s WIDN K

O

10
11
12
13
14
15
16
17
18
19

Inheritance and constructors

e Every subclass constructor must call a base class constructor

= |f none is manually called, the default constructor is used
m A subclass cannot initialise fields defined in the base class
m Abstract classes must have constructors

class BaseClass {
public:
BaseClass(int member): int member {member} {}
private:
int int member ;
std::string string member ;
}
class SubClass: public BaseClass {
public:
SubClass(int member, std::unique ptr<int>&& ptr): BaseClass(member), ptr member (std::move(ptr)) {}

}

SubClass(int member, std::unique ptr<int>&& ptr): int member (member), ptr member (std::move(ptr))

private:
std::vector<int> vector member ;
std::unique ptr<int> ptr member ;

{}

32

Destructing polymorphic objects

nich constructor is called?
nich destructor is called?
nat could the problem be?

= \What would the consequences be?

e How might we fix it, using the techniques we've
already learnt?

===

auto base = std::make unique<BaseClass>();
auto subclass = std::make unique<Subclass>();

= W N B

Destructing polymorphic objects

* \Whenever you write a class intended to be inherited
from, always make your destructor virtual

e Remember: When you declare a destructor, the move
constructor and assignment are not synthesized

class BaseClass {

BaseClass (BaseClass&&) = default;
BaseClass& operator=(BaseClass&&) = default;
virtual ~BaseClass() = default;

o b= W DN B

}

34

https://stackoverflow.com/questions/10024796/c-virtual-functions-but-no-virtual-destructors

Static and dynamic types

e Static type is the type it is declared as
e Dynamic type is the type of the object itself
e Static means compile-time, and dynamic means runtime

Quiz - What's the static and dynamic types of each of these?

1 int main() {

2 auto base class = BaseClass();

3 auto subclass = SubClass();

4 auto sub copy = subclass;

5

6

7 const BaseClass& base to base{base class};
8

9 const BaseClass& base to sub{subclass};
10
11 const SubClass& sub to base{base class};
12 const SubClass& sub to sub{subclass};
13
14 const SubClass& sub to base to sub{base to sub};

15 }

Static and dynamic binding

e Static binding: Decide which function to call at compile
time (based on static type)
e Dynamic binding: Decide which function to call at

runtime (based on dynamic type)
o C++

= Statically typed (types are calculated at compile time)
= Static binding for non-virtual functions
= Dynamic binding for virtual functions

® Java

= Statically typed
= Dynamic binding

36

Up-casting

Casting from a derived class to a base class is called up-casting
This cast is always safe

= All dogs are animals

Because the cast is always safe, C++ allows this as an implicit cast
One of the reasons to use auto is that it avoids implicit casts

auto dog = Dog();

Animal& animal dog;

O O x W DN

Animal* animal &dog;

Down-casting

e Casting from a base class to a derived class is called
down-casting
* This cast is not safe

= Not all animals are dogs

auto dog = Dog();
auto cat = Cat();
Animal& animal dog{dog};
Animal& animal cat{cat};

Dog& dog ref{animal dog};
Dog& dog ref{animal cat};

O OW 00O JOo O WD -

-

0O J O O d WD B

=
N = O O

How to down cast

e The compiler doesn't know if an Animal happens to be a Dog

= |f you know it is, you can use static_cast
= Otherwise, you can use dynamic_cast

o Returns null pointer for pointer types if it doesn't match
o Throws exceptions for reference types if it doesn't match

auto dog = Dog(); 1 auto dog = Dog();
auto cat = Cat(); 2 auto cat = Cat();
Animal& animal dog{dog}; 3 Animalé& animal dog{dog};
Animal& animal cat{cat}; 4 Animal& animal cat{cat};
5
6
Dog& dog ref{static cast<Dog&>(animal dog)}; 7 Dog* dog ref{static cast<Dog*>(&animal dog)};
Dog& dog ref{dynamic cast<Dog&>(animal dog)}; 8 Dog* dog ref{dynamic cast<Dog*>(&animal dog)};
9

=
o

Dog& dog ref{static cast<Dog&>(animal cat)}; Dog* dog ref{static cast<Dog*>(&animal cat)};

Dog& dog ref{dynamic cast<Dog&>(animal cat)}; 12 Dog* dog ref{dynamic cast<Dog*>(&animal cat)};

Covariants

¢ Read more about covariance and contravariance
e |f a function overrides a base, which type can it return?

= |f a base specifies that it returns a LandAnimal, a derived
also needs to return a LandAnimal

e Every possible return type for the derived must be a valid
return type for the base

1 class Base {

2 virtual LandAnimal& get favorite animal();
3)i

4

5 class Derived: public Base {

6

7 Animal& get favorite animal() override;

8

9 LandAnimal& get favorite animal() override;
10

11 Dog& get favorite animal() override;

12 };

40

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)

Contravariants

e |f a function overrides a base, which types can it take in?

= |f a base specifies that it takes in a LandAnimal, a
LandAnimal must always be valid input in the derived

e Every possible parameter to the base must be a possible
parameter for the derived

class Base {
virtual void use animal (LandAnimalé&);

}i
class Derived: public Base {

vold use animal (Animal&) override;

00 O U1l W DN K

O

void use animal (LandAnimal&) override;

=
o

11 volid use animal (Dog&) override;

| ¥

=
(NS

41

Default arguments and virtuals

e Default arguments are determined at compile time for efficiency's sake
e Hence, default arguments need to use the static type of the function

1 class Base {
2 public:
3 virtual ~Base() = default;
4 virtual void print num(int 1 = 1) {
5 std::cout << "Base " << i << '\n';
6 }
A
8
9 class Derived: public Base {
10 public:
11 void print num(int i = 2) override {
12 std: :cout << "Derived " << 1 << '\n';
13 }
14 };
15
16 int main() {
17 Derived derived;
18 Base* base = &derived;
19 derived.print num();
20 base->print num();
21 }

demo905-default.cpp

Construction of derived classes

e Base classes are always constructed before the derived class is constructed

= The base class ctor never depends on the members of the derived class
= The derived class ctor may be dependent on the members of the base class

class Animal {...}
class LandAnimal: public Animal {...}
class Dog: public LandAnimals {...}

Dog d;

0O J O UL » WD -

el e
B W N P OV

43

Virtuals in constructors

If a class is not fully constructed, cannot perform dynamic binding

class Animal {...};
class LandAnimal: public Animal {
LandAnimal () {
Run();

}

virtual void Run() {
std::cout << "Land animal running\n";

}
}i
class Dog: public LandAnimals {
void Run() override {
std::cout << "Dog running\n";

}

(oo e) W © 2 B~ U6 I O I

e
U WN = O L

}i

NN R B R
= O WOV 0 J O

Dog d;

44

Destruction of derived classes

Easy to remember order: Always opposite to
construction order

class Animal {...}
class LandAnimal: public Animal {...}
class Dog: public LandAnimals {...}

auto d = Dog();

00O o O WD K

==
N = O WO

45

Virtuals in destructors

e |f aclass is partially destructed, cannot perform dynamic binding
e Unrelated to the destructor itself being virtual

1 class Animal {...};
2 class LandAnimal: public Animal {
3 virtual ~LandAnimal() {
4 Run();
5 }
6
7 virtual void Run() {
8 std::cout << "Land animal running\n";
9 }
10 };
11 class Dog: public LandAnimals {
12 void Run() override {
13 std::cout << "Dog running\n";
14 }
15 };
16
17
18
19
20
21 auto d = Dog();

46

