
COMP6771
Advanced C++ Programming

Week 9
Runtime Polymorphism

Dynamic polymorphism or Late binding

1

Key concepts

Inheritance
To be able to create new classes by inheriting from existing classes.
To understand how inheritance promotes software reusability.
To understand the notions of base classes and derived classes.

Polymorphism
 Static: determine which method to call at compile time
Dynamic polymorphism: determine which method to call at run time

function call is resolved at run time
Closely related to polymorphism
Supported via virtual functions

2

Tenets of C++

Don't pay for what you don't use
C++ Supports OOP

No runtime performance penalty
C++ supports generic programming with the STL and templates

No runtime performance penalty
Polymorphism is extremely powerful, and we need it in C++

Do we need polymorphism at all when using inheritance?
Answer: sometimes
But how do we do so, considering that we don't want to make
anyone who doesn't use it pay a performance penalty

3

Thinking about programming

Represent concepts with classes
Represent relations with inheritance or composition

Inheritance: A is also a B, and can do everything B does
"is a" relationship
A dog is an animal

Composition (data member): A contains a B, but isn't a B itself
"has a" relationship
A person has a name

Choose the right one!

4

Inheritance
Represent concepts with classes
Represent relations with inheritance or composition

Inheritance: A is also a B, and can do everything B does
"is a" relationship
A dog is an animal

Composition (data member): A contains a B, but isn't a B itself
"has a" relationship
A person has a name

Choose the right one!

Inheritance is relation between two or more classes
where child/derived class inherits properties from
existing base/parent class.

Why:
code reusability & data protection

5

Examples
•Often an object from a derived class (subclass) “is an” object of a base class (superclass)

6

Inheritance in C++
Single vs Multiple
To inherit off classes in C++, we use "class DerivedClass: public BaseClass"
Visibility can be one of:

public
object of derived class can be treated as object of base class (not vice-versa)
 (generally use this unless you have good reason not to)
If you don't want public, you should (usually) use composition

protected
 allow derived to know details of parent

private
not inaccessible

Visibility is the maximum visibility allowed

If you specify ": private BaseClass", then the maximum visibility is private

Any BaseClass members that were public or protected are now private
7

Inheritance vs Access

8

Syntax and memory layout

This is very important, as it guides the design of everything we discuss this week

class BaseClass {
 public:
 int get_int_member() { return int_member_; }
 std::string get_class_name() {
 return "BaseClass"
 };

 private:
 int int_member_;
 std::string string_member_;
}

1
2
3
4
5
6
7
8
9
10
11

class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 return "SubClass";
 }

 private:
 std::vector<int> vector_member_;
 std::unique_ptr<int> ptr_member_;
}

1
2
3
4
5
6
7
8
9
10

BaseClass object

int_member_
string_member_

SubClass object

int_member_
string_member_

vector_member_
ptr_member_

BaseClass subobject

SubClass subobject

9

Constructors and Destructors

•Derived classes can have their own constructors and destructors
•When an object of a derived class is created, the base class’s constructor is executed first, followed by the derived class’s constructor
•When an object of a derived class is destroyed, its destructor is called first, then that of the base class

#include <iostream>

class base {
public:
 base() { std::cout << "Constructing base\n"; }
 ~base() { std::cout << "Destructing base\n"; }
};

class derived: public base {
public:
 derived() { std::cout << "Constructing derived\n"; }
 ~derived() { std::cout << "Destructing derived\n"; }
};

int main()
{
 derived ob;

 // do nothing but construct and destruct ob

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

SingleSingle

10

Constructors and Destructors
Multilevel

#include <iostream>

class base {
public:
 base() { std::cout << "Constructing base\n"; }
 ~base() { std::cout << "Destructing base\n"; }

};

class derived1 : public base {
public:
 derived1() { std::cout << "Constructing derived1\n"; }
 ~derived1() { std::cout << "Destructing derived1\n"; }
};

class derived2: public derived1 {
public:
 derived2() { std::cout << "Constructing derived2\n"; }
 ~derived2() { std::cout << "Destructing derived2\n"; }
};

int main()
{
 derived2 ob;

 // construct and destruct ob

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

11

Constructors and Destructors
Multiple#include <iostream>

using namespace std;

class base1
public:
 base1() { std::cout << "Constructing base1\n"; }
 ~base1() { std::cout << "Destructing base1\n"; }
};

class base2 {
public:
 base2() { std::cout << "Constructing base2\n"; }
 ~base2() { std::cout << "Destructing base2\n"; }
};

class derived: public base1, public base2 {
public:
 derived() { std::cout << "Constructing derived\n"; }
 ~derived() { std::cout << "Destructing derived\n"; }
};

int main()
{
 derived ob;

 // construct and destruct ob

 return 0;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Constructors are called in order of derivation, left to
right, as specified in derived's inheritance list.

Destructors are called in reverse order, right to left.

Passing Arg to constructor
can be inline too
Must be if base has no default

Problem: what if base classes have member variables/functions with the same name?

Solutions:

–Derived class redefines the multiply-defined function

–Derived class invokes member function in a particular base class using scope

resolution operator ::

12

Redefining Base Function
1. Redefining function: function in a derived class that has the same name and parameter list as a function in the base class.
2. Typically used to replace a function in base class with different actions in derived class.
3. Not the same as overloading – with overloading, parameter lists must be different.
4. Objects of base class use base class version of function; objects of derived class use derived class version of function.

//base class
class GradeActivity{
protected:
 char letter;
 double score;
 void determineGrade();
public:
 GradeActivity() //default constr.
 {letter=' '; score=0.0;}
 void setScore(double s){ // mutator
 score=s;
 determineGrade();}
 double getScore() const
 {return score;}
 char getLetterGrade() const
 {return letter;}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

//derived class
#ifndef CURVEACTIVITY_H
#define CURVEACTIVITY_H

class CurveActivity : public GradeActivity{
protected:
 char rawScore;
 double percenrage;
 void determineGrade();
public:
 CurveActivity():GradeActivity() //default constr.
 {rawScore=0.0; percentage=0.0;}
 void setScore(double s){ // mutator
 rawScore=s;
 GradeActivity::setScore(rawScore*percentage);}
 void setPercentage(double c) const
 {percentage=c;}
 //accessor function
 double getPercentage() const
 {return percentage;}
 double getRawScore() const
 {return rawScore;}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

int main()
{
double numscore, per;
CurvedActivity exam;
std::cout<<"Enter raw score";
std::cin>>numscore;
std::cout<<"%age";
std::cin>>per;
exam.setPercentage(per);
exam.setScore(numscore);

std::cout<<exam.getRawScore();
std::cout<<exam.getScore();
std::cout<<exam.getLetterGrade();

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

13

Problem: Redefining Base Function

BaseClass
void X();
Void Y();

DerivedClass : public BaseClass

Void Y(); //redefined

DerivedClass D;
D.X();

Object D invokes function X() in BaseClass.
Function X() invokes function Y() in BaseClass,
not function Y() in DerivedClass, because
function calls are bound at compile time. This
is static binding.

14

#include <iostream>

class Shape {
 protected:
 int width, height;
 public:
 Shape(int a = 0, int b = 0){
 width = a;
 height = b;
 }
 int area() {
 std::cout << "Parent class area :" <<endl;
 return 0;
 }
};
class Rectangle: public Shape {
 public:
 Rectangle(int a = 0, int b = 0):Shape(a, b) { }
 int area () {
 std::cout << "Rectangle class area :" <<endl;
 return (width * height);
 }
};
class Triangle: public Shape {
 public:
 Triangle(int a = 0, int b = 0):Shape(a, b) { }

 int area () {
 cout << "Triangle class area :" <<endl;
 return (width * height / 2);
 }
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

// Main function for the program
int main() {
 Shape *shape;
 Rectangle rec(10,7);
 Triangle tri(10,5);
 // store the address of Rectangle
 shape = &rec;
 // call rectangle area.
 shape->area();
 // store the address of Triangle
 shape = &tri;
 // call triangle area.
 shape->area();
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Parent class area :
Parent class area :

Problem: Redefining Base Function

// Main function for the program
int main() {

 Rectangle rec(10,7);
 Triangle tri(10,5);

 rec.area();

 tri.area();
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11

Rectangle class area :
Triangle class area :

15

int main() {
 int num_desserts = 24 + 35; // + operator used for addition
 cout << num_desserts << endl;
 string str1 = "We can combine strings ";
 string str2 = "that talk about delicious desserts";
 string str = str1 + str2; // + operator used for combining two strings
 cout << str << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

Example from Past

16

Polymorphism and values
Polymorphism means that a call to a member function will cause a different
function to be executed depending on the type of object that invokes the
function.
Polymorphism allows reuse of code by allowing objects of related types to be
treated the same.
How many bytes is a BaseClass instance?
How many bytes is a DerivedClass instance?
One of the guiding principles of C++ is "You don't pay for what you don't use"

Let's discuss the following code, but pay great consideration to the memory
layout

class BaseClass {
 public:
 int get_member() { return member_; }
 std::string get_class_name() {
 return "BaseClass";
 };

 private:
 int member_;
}

1
2
3
4
5
6
7
8
9
10

class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9

void print_class_name(BaseClass base) {
 std::cout << base.get_class_name()
 << ' ' << base.get_member()
 << '\n';
}

int main() {
 BaseClass base_class;
 SubClass subclass;
 print_class_name(base_class);
 print_class_name(subclass);
}

1
2
3
4
5
6
7
8
9
10
11
12demo901-poly.cpp

17

The object slicing problem
If you declare a BaseClass variable, how big is it?
How can the compiler allocate space for it on the stack, when it doesn't know how
big it could be?
The solution: since we care about performance, a BaseClass can only store a
BaseClass, not a SubClass

If we try to fill that value with a SubClass, then it just fills it with the BaseClass
subobject, and drops the SubClass subobject

class BaseClass {
 public:
 int get_member() { return member_; }
 std::string get_class_name() {
 return "BaseClass";
 };

 private:
 int member_;
}

1
2
3
4
5
6
7
8
9
10

class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9

void print_class_name(BaseClass base) {
 std::cout << base.get_class_name()
 << ' ' << base.get_member()
 << '\n';
}

int main() {
 BaseClass base_class;
 SubClass subclass;
 print_class_name(base_class);
 print_class_name(subclass);
}

1
2
3
4
5
6
7
8
9
10
11
12

demo901-poly.cpp
18

Polymorphism and References
How big is a reference/pointer to a BaseClass
How big is a reference/pointer to a SubClass
Object slicing problem solved (but still another problem)
One of the guiding principles of C++ is "You don't pay for what you don't use"

How does the compiler decide which version of GetClassName to call?
When does the compiler decide this? Compile or runtime?

How can it ensure that calling GetMember doesn't have similar overhead

class BaseClass {
 public:
 int get_member() { return member_; }
 std::string get_class_name() {
 return "BaseClass";
 };

 private:
 int member_;
}

1
2
3
4
5
6
7
8
9
10

class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9

void print_class_name(BaseClass& base) {
 std::cout << base.get_class_name()
 << ' ' << base.get_member()
 << '\n';
}

int main() {
 BaseClass base_class;
 SubClass subclass;
 print_class_name(base_class);
 print_class_name(subclass);
}

1
2
3
4
5
6
7
8
9
10
11
12

demo902-poly.cpp
19

Virtual functions
How does the compiler decide which version of GetClassName to call?
How can it ensure that calling GetMember doesn't have similar overhead

Explicitly tell compiler that GetClassName is a function designed to be modified by subclasses
Use the keyword "virtual" in the base class:

function in base class that expects to be redefined in derived class
supports dynamic binding: functions bound at run time to function that they call.
At runtime, C++ determines the type of object making the call, and binds the function to
the appropriate version of the function.
It ensures that the correct function is called for an object, regardless of the type of
reference (or pointer) used for function call.
Without virtual member functions, C++ uses static (compile time) binding.
Use the keyword "override" in the subclass

class BaseClass {
 public:
 int get_member() { return member_; }
 virtual std::string get_class_name() {
 return "BaseClass"
 };

 private:
 int member_;
}

1
2
3
4
5
6
7
8
9
10

class SubClass: public BaseClass {
 public:
 std::string GetClassName() override {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9

void print_stuff(const BaseClass& base) {
 std::cout << base.get_class_name()
 << ' ' << base.get_member()
 << '\n';
}

int main() {
 BaseClass base_class;
 SubClass subclass;
 print_class_name(base_class);
 print_class_name(subclass);
}

1
2
3
4
5
6
7
8
9
10
11
12demo903-virt.cpp 20

Override

While override isn't required by the compiler, you should always use it
Override fails to compile if the function doesn't exist in the base class. This helps
with:

Typos
Refactoring
Const / non-const methods
Slightly different signatures

class BaseClass {
 public:
 int get_member() { return member_; }
 virtual std::string get_class_name() {
 return "BaseClass"
 };

 private:
 int member_;
}

1
2
3
4
5
6
7
8
9
10

class SubClass: public BaseClass {
 public:
 // This compiles. But this is a
 // different function to the
 // BaseClass get_class_name.
 std::string get_class_name() const {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9
10
11
12

21

Virtual functions

class BaseClass {
 public:
 virtual std::string get_class_name() {
 return "BaseClass";
 };

 ~BaseClass() {
 std::cout << "Destructing base class\n";
 }
}

class SubClass: public BaseClass {
 public:
 std::string get_class_name() override {
 return "SubClass";
 }

 ~SubClass() {
 std::cout << "Destructing subclass\n";
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

void print_stuff(const BaseClass& base_class) {
 std::cout << base_class.get_class_name()
 << ' ' << base_class.get_member()
 << '\n';
}

int main() {
 auto subclass = static_cast<std::unique_ptr<BaseClass>>(
 std::make_unique<SubClass>());
 std::cout << subclass->get_class_name();
}

1
2
3
4
5
6
7
8
9
10
11

So what happens when we start using virtual members?

demo904-virt.cpp
22

Rules for Virtual Function
1. Virtual functions cannot be static.

2. A virtual function can be a friend function of
another class.

3. Virtual functions should be accessed using
pointer or reference of base class type to achieve
runtime polymorphism. Base class pointer can
point to the objects of base class as well as
to the objects of derived class.

4. The prototype of virtual functions should be the
same in the base as well as derived class.

5. They are always defined in the base class and
overridden in a derived class. It is not mandatory
for the derived class to override (or re-define the
virtual function), in that case, the base class
version of the function is used.

6. A class may have but it cannot
have a virtual constructor.

virtual destructor

#include<iostream>
class base {
public:
 virtual void print() {
 std::cout << "print base class\n";
 }

 void show() {
 std::cout << "show base class\n";
 }
};
class derived : public base {
public:
 void print() {
 std::cout << "print derived class\n";
 }

 void show() {
 std::cout << "show derived class\n";
 }
};

int main()
{
 base *bptr;
 derived d;
 bptr = &d;
 // Virtual function, binded at runtime
 bptr->print();
 // Non-virtual function, binded at compile time
 bptr->show();
 base b1;
 b.print();
 base b2=derived();
 b2.print();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 23

https://www.geeksforgeeks.org/virtual-destructor/

#include <iostream>

class Shape {
 protected:
 int width, height;

 public:
 Shape(int a = 0, int b = 0) {
 width = a;
 height = b;
}
 virtual int area() {
 cout << "Parent class area :" <<endl;
 return 0;
}
};
class Rectangle: public Shape {
 public:
 Rectangle(int a = 0, int b = 0):Shape(a, b) { }
 int area () {
 std::cout << "Rectangle class area :" <<endl;
 return (width * height);
 }
};
class Triangle: public Shape {
 public:
 Triangle(int a = 0, int b = 0):Shape(a, b) { }

 int area () {
 cout << "Triangle class area :" <<endl;
 return (width * height / 2);
 }
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// Main function for the program
int main() {
 Shape *shape;
 Rectangle rec(10,7);
 Triangle tri(10,5);
 // store the address of Rectangle
 shape = &rec;
 // call rectangle area.
 shape->area();
 // store the address of Triangle
 shape = &tri;
 // call triangle area.
 shape->area();
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Rectangle class area
Triangle class area

24

VTables
Each class has a VTable stored in the data segment

A vtable is an array of function pointers that says which definition each virtual function points to for that
class

If the VTable for a class is non-empty, then every member of that class has an additional data member that
is a pointer to the vtable
When a virtual function is called on a reference or pointer type, then the program actually does the
following
1. Follow the vtable pointer to get to the vtable
2. Increment by an offset, which is a constant for each function
3. Follow the function pointer at vtable[offset] and call the function

Another example here 25

https://pabloariasal.github.io/2017/06/10/understanding-virtual-tables/

Final

Specifies to the compiler "this is not virtual for any subclasses"
If the compiler has a variable of type SubClass&, it now no longer
needs to look it up in the vtable
This means static binding if you have a SubClass&, but dynamic
binding for BaseClass&

class BaseClass {
 public:
 int get_member() { return member_; }
 virtual std::string get_class_name() {
 return "BaseClass"
 };

 private:
 int member_;
}

1
2
3
4
5
6
7
8
9
10

class SubClass: public BaseClass {
 public:
 std::string get_class_name() override final {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9

26

Types of functions

Syntax Name Meaning
virtual void fn() = 0; pure

virtual
Inherit interface only

virtual void fn() {} virtual Inherit interface with optional implementation
void fn() {} nonvirtual Inherit interface and mandatory implementation

Note: nonvirtuals can be hidden by writing a function with the same name in a
subclass

DO NOT DO THIS

27

Why We Need Poly
class Shape{
public:
virtual void draw(){ cout<<"Shape"<<endl;};
};

class Traingle: public Shape
{
public: void draw(){cout<<"Triangle"<<endl;}
};

class Rectangle: public Shape
{
public: void draw (){cout<<"Rectangle"<<endl;}
};

void pre_draw(Shape*);

int main(){
std::vector<Shape*> v = get_shape_vector();
for(Shape* s : v)
 s->draw();

 // To modify
for(Shape* s : v) {
pre_draw(s);
s->draw();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

class Shape{
public:
void draw(){ cout<<"Shape"<<endl;};
};

class Traingle: public Shape
{
public: void draw(){cout<<"Triangle"<<endl;}
};

class Rectangle: public Shape
{
public: void draw (){cout<<"Rectangle"<<endl;}
};

void pre_draw1(Shape1&);
void pre_draw2(Shape2&);
// ...
void pre_drawN(ShapeN&);

int main(){
std::vector<Shape1> v1 = get_shape1_vector();
std::vector<Shape2> v2 = get_shape2_vector();
// ...
std::vector<ShapeN> vN = get_shapeN_vector();

for(Shape1& s : v1)
 s.draw();
for(Shape2& s : v2)
 s.draw();
// ...
for(ShapeN& s : vN)
 s.draw();
// Suppose we need to modify
for(Shape1& s : v1) {
 pre_draw1(s);
 s.draw();
}
for(Shape2& s : v1) {
 pre_draw2(s);
 s.draw();
}
// ...
for(ShapeN& s : v1) {
 pre_drawN(s);
 s.draw();
}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

int main(){
 Traingle tObj;
 tObj->draw();
 Rectangle rObj;
 rObj->draw();
}

1
2
3
4
5
6

To add new shapes later. simply need to define
the new type, and the virtual function. we simply
need to add pointers to it into the array and
they will be processed just like objects of every
other compatible type.

Besides defining the new type, we have to create a
new array for it. And need to create a new pre_draw
function as well as need to add a new loop to
process them.

28

Abstract Base Classes (ABCs)

Might want to deal with a base class, but the base class by itself is nonsense
What is the default way to draw a shape? How many sides by default?
A function takes in a "Clickable"

Might want some default behaviour and data, but need others
All files have a name, but are reads done over the network or from a disk

If a class has at least one "abstract" (pure virtual in C++) method, the class is
abstract and cannot be constructed

It can, however, have constructors and destructors
These provide semantics for constructing and destructing the ABC
subobject of any derived classes

29

Pure virtual functions

Virtual functions are good for when you have a default
implementation that subclasses may want to overwrite
Sometimes there is no default available
A pure virtual function specifies a function that a class
must override in order to not be abstract

class Shape {
 // Your derived class "Circle" may forget to write this.
 virtual void draw(Canvas&) {}

 // Fails at link time because there's no definition.
 virtual void draw(Canvas&);

 // Pure virtual function.
 virtual void draw(Canvas&) = 0;
};

1
2
3
4
5
6
7
8
9
10

30

Creating polymorphic objects

In a language like Java, everything is a pointer
This allows for code like on the left
Not possible in C++ due to objects being stored inline

This then leads to slicing problem
If you want to store a polymorphic object, use a pointer

// Java-style C++ here
// Don't do this.

auto base = std::vector<BaseClass>();
base.push_back(BaseClass{});
base.push_back(SubClass1{});
base.push_back(SubClass2{});

1
2
3
4
5
6
7

// Good C++ code
// But there's a potential problem here.
// (*very* hard to spot)

auto base = std::vector<std::unique_ptr<BaseClass>>();
base.push_back(std::make_unique<BaseClass>());
base.push_back(std::make_unique<Subclass1>());
base.push_back(std::make_unique<Subclass2>());

1
2
3
4
5
6
7
8

31

Inheritance and constructors

Every subclass constructor must call a base class constructor
If none is manually called, the default constructor is used
A subclass cannot initialise fields defined in the base class
Abstract classes must have constructors

class BaseClass {
 public:
 BaseClass(int member): int_member_{member} {}

 private:
 int int_member_;
 std::string string_member_;
}

class SubClass: public BaseClass {
 public:
 SubClass(int member, std::unique_ptr<int>&& ptr): BaseClass(member), ptr_member_(std::move(ptr)) {}
 // Won't compile.
 SubClass(int member, std::unique_ptr<int>&& ptr): int_member_(member), ptr_member_(std::move(ptr)) {}

 private:
 std::vector<int> vector_member_;
 std::unique_ptr<int> ptr_member_;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

32

Destructing polymorphic objects

Which constructor is called?
Which destructor is called?
What could the problem be?

What would the consequences be?
How might we fix it, using the techniques we've
already learnt?

// Simplification of previous slides code.

auto base = std::make_unique<BaseClass>();
auto subclass = std::make_unique<Subclass>();

1
2
3
4

33

Destructing polymorphic objects

Whenever you write a class intended to be inherited
from,
Remember: When you declare a destructor, the move
constructor and assignment are not synthesized

always make your destructor virtual

class BaseClass {
 BaseClass(BaseClass&&) = default;
 BaseClass& operator=(BaseClass&&) = default;
 virtual ~BaseClass() = default;
}

1
2
3
4
5

Forgetting this can be a hard bug to spot
34

https://stackoverflow.com/questions/10024796/c-virtual-functions-but-no-virtual-destructors

Static and dynamic types

Static type is the type it is declared as
Dynamic type is the type of the object itself
Static means compile-time, and dynamic means runtime

Due to object slicing, an object that is neither reference or
pointer always has the same static and dynamic type

int main() {
 auto base_class = BaseClass();
 auto subclass = SubClass();
 auto sub_copy = subclass;
 // The following could all be replaced with pointers
 // and have the same effect.
 const BaseClass& base_to_base{base_class};
 // Another reason to use auto - you can't accidentally do this.
 const BaseClass& base_to_sub{subclass};
 // Fails to compile
 const SubClass& sub_to_base{base_class};
 const SubClass& sub_to_sub{subclass};
 // Fails to compile (even though it refers to at a sub);
 const SubClass& sub_to_base_to_sub{base_to_sub};
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Quiz - What's the static and dynamic types of each of these?

35

Static and dynamic binding

Static binding: Decide which function to call at compile
time (based on static type)
Dynamic binding: Decide which function to call at
runtime (based on dynamic type)
C++

Statically typed (types are calculated at compile time)
Static binding for non-virtual functions
Dynamic binding for virtual functions

Java
Statically typed
Dynamic binding

36

Up-casting

Casting from a derived class to a base class is called up-casting
This cast is always safe

All dogs are animals
Because the cast is always safe, C++ allows this as an implicit cast
One of the reasons to use auto is that it avoids implicit casts

auto dog = Dog();

// Up-cast with references.
Animal& animal = dog;
// Up-cast with pointers.
Animal* animal = &dog;

1
2
3
4
5
6

37

Down-casting

Casting from a base class to a derived class is called
down-casting
This cast is not safe

Not all animals are dogs

auto dog = Dog();
auto cat = Cat();
Animal& animal_dog{dog};
Animal& animal_cat{cat};

// Attempt to down-cast with references.
// Neither of these compile.
// Why not?
Dog& dog_ref{animal_dog};
Dog& dog_ref{animal_cat};

1
2
3
4
5
6
7
8
9
10

38

How to down cast

The compiler doesn't know if an Animal happens to be a Dog
If you know it is, you can use static_cast
Otherwise, you can use dynamic_cast

 Returns null pointer for pointer types if it doesn't match
Throws exceptions for reference types if it doesn't match

auto dog = Dog();
auto cat = Cat();
Animal& animal_dog{dog};
Animal& animal_cat{cat};

// Attempt to down-cast with pointers.
Dog* dog_ref{static_cast<Dog*>(&animal_dog)};
Dog* dog_ref{dynamic_cast<Dog*>(&animal_dog)};
// Undefined behaviour (incorrect static cast).
Dog* dog_ref{static_cast<Dog*>(&animal_cat)};
// returns null pointer
Dog* dog_ref{dynamic_cast<Dog*>(&animal_cat)};

1
2
3
4
5
6
7
8
9
10
11
12

auto dog = Dog();
auto cat = Cat();
Animal& animal_dog{dog};
Animal& animal_cat{cat};

// Attempt to down-cast with references.
Dog& dog_ref{static_cast<Dog&>(animal_dog)};
Dog& dog_ref{dynamic_cast<Dog&>(animal_dog)};
// Undefined behaviour (incorrect static cast).
Dog& dog_ref{static_cast<Dog&>(animal_cat)};
// Throws exception
Dog& dog_ref{dynamic_cast<Dog&>(animal_cat)};

1
2
3
4
5
6
7
8
9
10
11
12

39

Covariants

If a function overrides a base, which type can it return?
If a base specifies that it returns a LandAnimal, a derived
also needs to return a LandAnimal

Every possible return type for the derived must be a valid
return type for the base

Read more about covariance and contravariance

class Base {
 virtual LandAnimal& get_favorite_animal();
};

class Derived: public Base {
 // Fails to compile: Not all animals are land animals.
 Animal& get_favorite_animal() override;
 // Compiles: All land animals are land animals.
 LandAnimal& get_favorite_animal() override;
 // Compiles: All dogs are land animals.
 Dog& get_favorite_animal() override;
};

1
2
3
4
5
6
7
8
9
10
11
12

40

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)

Contravariants

If a function overrides a base, which types can it take in?
If a base specifies that it takes in a LandAnimal, a
LandAnimal must always be valid input in the derived

Every possible parameter to the base must be a possible
parameter for the derived

class Base {
 virtual void use_animal(LandAnimal&);
};

class Derived: public Base {
 // Compiles: All land animals are valid input (animals).
 void use_animal(Animal&) override;
 // Compiles: All land animals are valid input (land animals).
 void use_animal(LandAnimal&) override;
 // Fails to compile: Not All land animals are valid input (dogs).
 void use_animal(Dog&) override;
};

1
2
3
4
5
6
7
8
9
10
11
12

41

Default arguments and virtuals

Default arguments are determined at compile time for efficiency's sake
Hence, default arguments need to use the static type of the function
Avoid default arguments when overriding virtual functions

class Base {
public:
 virtual ~Base() = default;
 virtual void print_num(int i = 1) {
 std::cout << "Base " << i << '\n';
 }
};

class Derived: public Base {
public:
 void print_num(int i = 2) override {
 std::cout << "Derived " << i << '\n';
 }
};

int main() {
 Derived derived;
 Base* base = &derived;
 derived.print_num(); // Prints "Derived 2"
 base->print_num(); // Prints "Derived 1"
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

demo905-default.cpp 42

Construction of derived classes

Base classes are always constructed before the derived class is constructed
The base class ctor never depends on the members of the derived class
The derived class ctor may be dependent on the members of the base class

class Animal {...}
class LandAnimal: public Animal {...}
class Dog: public LandAnimals {...}

Dog d;

// Dog() calls LandAnimal()
 // LandAnimal() calls Animal()
 // Animal members constructed using initialiser list
 // Animal constructor body runs
 // LandAnimal members constructed using initialiser list
 // LandAnimal constructor body runs
// Dog members constructed using initialiser list
// Dog constructor body runs

1
2
3
4
5
6
7
8
9
10
11
12
13
14

43

Virtuals in constructors

If a class is not fully constructed, cannot perform dynamic binding

class Animal {...};
class LandAnimal: public Animal {
 LandAnimal() {
 Run();
 }

 virtual void Run() {
 std::cout << "Land animal running\n";
 }
};
class Dog: public LandAnimals {
 void Run() override {
 std::cout << "Dog running\n";
 }
};

// When the LandAnimal constructor is being called,
// the Dog part of the object has not been constructed yet.
// C++ chooses to not allow dynamic binding in constructors
// because Dog::Run() might depend upon Dog's members.
Dog d;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

44

Destruction of derived classes

Easy to remember order: Always opposite to
construction order

class Animal {...}
class LandAnimal: public Animal {...}
class Dog: public LandAnimals {...}

auto d = Dog();

// ~Dog() destructor body runs
 // Dog members destructed in reverse order of declaration
 // ~LandAnimal() destructor body runs
 // LandAnimal members destructed in reverse order of declaration
 // ~Animal() destructor body runs
// Animal members destructed in reverse order of declaration.

1
2
3
4
5
6
7
8
9
10
11
12

45

Virtuals in destructors

If a class is partially destructed, cannot perform dynamic binding
Unrelated to the destructor itself being virtual

class Animal {...};
class LandAnimal: public Animal {
 virtual ~LandAnimal() {
 Run();
 }

 virtual void Run() {
 std::cout << "Land animal running\n";
 }
};
class Dog: public LandAnimals {
 void Run() override {
 std::cout << "Dog running\n";
 }
};

// When the LandAnimal constructor is being called,
// the Dog part of the object has already been destroyed.
// C++ chooses to not allow dynamic binding in destructors
// because Dog::Run() might depend upon Dog's members.
auto d = Dog();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

46

Feedback

47

