
COMP6771
Advanced C++ Programming

Week 10.2
Conclusion

(aka ~COMP6771())
1

COMP6771 in 60 Minutes or Less
a.k.a.: Revision

2

Week 01: C -> C++

C++ is a general-purpose programming language:
CPU-native types: int, double, void*, etc.

Class-like types: struct, class, union

Functions: void foo(int, double*)

Opt-in immutability: const int i = 5

auto: auto it = std::vector<int>{}.begin();

Value-semantics and reference semantics: T/T&/T*

A rich standard library: vector, tuple, etc.

Modular code-sharing: #include<>

Separate compilation and linking
3

Week 02: STL

Standard Template Library (STL)
Containers, e.g.

std::vector

std::list

Algorithms, e.g.

std::copy()

std::transform

Iterators
 Input, Output, RandomAccess
Glue between containers and algorithms

4

Week 03: Classes
Scope

 Functions, for, if, while, {}, namespace introduce scopes
 Variables are accessible according to their scope

 Object Lifetime
 Lifetime starts when brought into scope
Lifetime ends when the scope ends

 Classes are user-defined types that mirror primitives like int
 Initialisation customisable through constructors
Clean-up customisable through destructor

 Internal entities of a class are members
 Member functions
Data Members
Static member functions and static data members
API extensions through friendship

5

Week 04: Advanced Classes
Operator-Overloading

Provide user-defined meanings for operators in C++
Chained-operations very easy to read
Make classes "feel" like primitives
e.g. v1 + v2 == vec2d{v1.x + v2.x, v1.y + v2.y}
is more natural than add(v1, v2)

 Exceptions
 Classes that represent unexpected runtime errors
Dedicated syntax: throw/try/catch
Compiler-enforced stack-unwinding
Throw by value, catch by const& !!

Full list of overloadable operators

6

https://en.cppreference.com/w/cpp/language/operators

Week 05: Resource Management
C++ manages resources through RAII:

Acquire resources (memory, locks, etc.) in the constructor
Release them through the destructor
Every resource owned by an RAII class
Prevents resource leaks (by exceptions, forgetfulness, etc.)

Ownership enforced through copy-control:
Able to prevent deep copies by deleting copy-constructor and copy-
assign
Efficient transfer of ownership through move semantics

RAII-conforming Smart Pointers replace "owning" pointers:
std::unique_ptr<T>/T* for unique ownership/observeration
std::shared_ptr<T>/std::weak_ptr<T> for shared ownership
Automatically free dynamically-allocated objects

7

Week 07: Templates
Generic Programming through compile-time type paramerisation
Function, Class, Alias, Variable, and Variadic templates
Compiler synthesises function/class/typedef/variable definition from the
template when required

Can be forced by explicit instantiation
Primary template customisable through specialisation, either:

Fully (explicit specialisation); or
Partially (partial specialisation, only for class templates)

Parameterisable by:
Types (e.g. template <typename T>
Non-type template parameters (e.g. template <int N>)
Template-template parameters (e.g. template <template
<typename> typename Container>)

8

Week 08: TMP
Templates are "accidentally" Turing-complete i.e. they can be used to calculate
anything
Type traits use templates to ask questions at compile-time:

Is T a pointer type (e.g. int*)?
What does T look like with const removed? (e.g. const int -> int)
Makes heavy use of struct templates and partial/explicit specialisation
Excessive use causes incredibly long compile-times and/or code bloat

Forwarding references (T&&) introduced in C++11:
auto type deduction and rvalue references binds to anything
Can be used to "forward" arguments from one function to another whilst
preserving rvalue-ness or lvalue-ness

Modern C++ TMP moving away from abusing templates:
Constexpr-world: compile-time expressions e.g. if-constexpr
 decltype: get the declared type of a variable at compile-time

9

Week 09: Dynamic Polymorphism
Classic OOP through Dynamic Polymorphism

Inheritance and derived classes
virtual methods
override, final, pure-virtual (abstract) methods
Early (at compile-time) binding vs. late (at runtime) binding

Implemented through vtables:
Table of function pointers to virtual methods
Compiler-generated

Can cast up and down type hierarchies with dynamic_cast
Important considerations:

Polymorphic classes must have virtual destructors!
Dynamic polymorphism only happens for T* and T&!
Copying/moving a derived class into a base class causes object slicing

10

Week 10: Advanced C++
(from guest lecture; not assessable)

Concepts
aka avoiding ->

Modules
Ranges
Coroutines

11

Week 11: Goodbye*
https://www.youtube.com/watch?v=qROu_TyeolU&t=77s&ab_channel=BoyzIIMen-Topic

* Not yet (click right)
12

Final Exam

See the for in-depth information
Practical exam with two questions:

Q1 - STL, algorithms, dynamic polymorphism
Q2 - classes, templates, compile-time programming

Q1 targets:
Students aiming for a PS or a CR
Easier than Q2

Q2 targets:
Students aiming for a D or HD
Quite difficult but completable with everything taught in this course

Partial marks available for Q1 and Q2
Sample Exam released NOW!

No solutions will be released
Can ask questions about it on the forum

Week 10 Notice

13

https://webcms3.cse.unsw.edu.au/COMP6771/22T2/notices/

Goodbye 👋

Further awesome C++ resources
Books:

by Bjarne Stroustrup (creator of C++!)
Anything by (ISO Chair for C++)

Videos:

 (free conference talks, held annually)

The Design & Evolution of C++
Herb Sutter

Cppcon
C++ Weekly with Jason Turner

I Tried This ONE Trick to INCREASE Exam Time and My Life Changed FOREVER...

14

https://www.stroustrup.com/dne.html
https://www.amazon.com/Herb-Sutter/e/B001ILHLCK%3Fref=dbs_a_mng_rwt_scns_share
https://www.youtube.com/user/CppCon
https://www.youtube.com/c/lefticus1
http://myexperience.unsw.edu.au/

Feedback

15

